Hydrogen and Carbon Dioxide Adsorption with Tetra-n-Butyl Ammonium Semi-Clathrate Hydrates for Gas Separations

被引:22
作者
Komatsu, Hiroyuki [1 ]
Ota, Masaki [2 ]
Sato, Yoshiyuki [2 ]
Watanabe, Masaru [2 ]
Smith, Richard L., Jr. [3 ]
机构
[1] Niigata Univ, Dept Chem & Chem Engn, Niigata 9502181, Japan
[2] Tohoku Univ, Grad Sch Engn, Res Ctr Supercrit Fluid Technol, Sendai, Miyagi 9808579, Japan
[3] Tohoku Univ, Grad Sch Environm Studies, Res Ctr Supercrit Fluid Technol, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
separations; gas adsorption; formation kinetics; structure; anion; SIMULATED FUEL GAS; FLUE-GAS; CO2; CAPTURE; TETRABUTYLAMMONIUM FLUORIDE; ENERGY-RESOURCES; BROMIDE; EQUILIBRIA; BIOGAS; SALTS; TBAB;
D O I
10.1002/aic.14689
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Gas adsorption rates of H-2, CO2, and H-2-CO2 gas mixture (H-2/CO2=3.4) with tetra-n-butyl ammonium salt (bromide, chloride, and fluoride) semi-clathrate hydrate particles were measured at 269 K to assess their properties for gas separation. Equilibrium gas occupancies in the S-cages of the particles were in order of (high to low) for hexagonal structure-I, tetragonal structure-I, and superlattice of cubic structure-I structures with the maximum fractional occupancy by CO2 being about 40%. The CO2 diffusion rate depended on the anion size of the salt, which is attributed to distortion of the S-cage that is close to the molecular size of CO2. Simulations of semi-clathrate hydrate particles with theory showed that H-2/CO2 selectivities could be as high as 36 (3.0 mol% TBAF) and that selectivities for an ideal membrane (3.3 mol% TBAF) could be >100 (269 K, 0.3-4.5 MPa). Semi-clathrate hydrates have wide application as separation media for gas mixtures. (c) 2014 American Institute of Chemical Engineers AIChE J, 61: 992-1003, 2015
引用
收藏
页码:992 / 1003
页数:12
相关论文
共 49 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]   Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column [J].
Adeyemo, Adebola ;
Kumar, Rajnish ;
Linga, Praveen ;
Ripmeester, John ;
Englezos, Peter .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (03) :478-485
[3]   Multi-objective planning of distributed energy resources: A review of the state-of-the-art [J].
Alarcon-Rodriguez, Arturo ;
Ault, Graham ;
Galloway, Stuart .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (05) :1353-1366
[4]   Methodology for optimization of distributed biomass resources evaluation, management and final energy use [J].
Alfonso, D. ;
Perpina, C. ;
Perez-Navarro, A. ;
Penalvo, E. ;
Vargas, C. ;
Cardenas, R. .
BIOMASS & BIOENERGY, 2009, 33 (08) :1070-1079
[5]   Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites [J].
Alonso-Vicario, A. ;
Ochoa-Gomez, Jose R. ;
Gil-Rio, S. ;
Gomez-Jimenez-Aberasturi, O. ;
Ramirez-Lopez, C. A. ;
Torrecilla-Soria, J. ;
Dominguez, A. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 134 (1-3) :100-107
[6]   Biogas upgrading - technology overview, comparison and perspectives for the future [J].
Bauer, Fredric ;
Persson, Tobias ;
Hulteberg, Christian ;
Tamm, Daniel .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2013, 7 (05) :499-511
[7]   Vapor-liquid equilibrium for binary systems of carbon dioxide plus methanol, hydrogen plus methanol, and hydrogen plus carbon dioxide at high pressures [J].
Bezanehtak, K ;
Combes, GB ;
Dehghani, F ;
Foster, NR ;
Tomasko, DL .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2002, 47 (02) :161-168
[8]  
Davidson DW, 1973, WATER A COMPREHENSIV, V2
[9]   CO2 capture by hydrate crystallization -: A potential solution for gas emission of steelmaking industry [J].
Duc, Nguyen Hong ;
Chauvy, Fabien ;
Herri, Jean-Michel .
ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (04) :1313-1322
[10]   CLATHRATE POLYHYDRATES OF PERALKYLONIUM SALTS AND THEIR ANALOGS [J].
DYADIN, YA ;
UDACHIN, KA .
JOURNAL OF STRUCTURAL CHEMISTRY, 1987, 28 (03) :394-432