MDCN: Multi-Scale Dense Cross Network for Image Super-Resolution

被引:79
|
作者
Li, Juncheng [1 ,2 ]
Fang, Faming [1 ,2 ]
Li, Jiaqian [1 ,2 ]
Mei, Kangfu [3 ]
Zhang, Guixu [1 ,2 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200062, Peoples R China
[3] Chinese Univ Hong Kong Shenzhen, Dept Math, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image reconstruction; Adaptation models; Correlation; Image resolution; Computational modeling; Task analysis; Single image super-resolution; multi-scale; feature distillation; dynamic reconstruction; INTERPOLATION;
D O I
10.1109/TCSVT.2020.3027732
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks have been proven to be of great benefit for single-image super-resolution (SISR). However, previous works do not make full use of multi-scale features and ignore the inter-scale correlation between different upsampling factors, resulting in sub-optimal performance. Instead of blindly increasing the depth of the network, we are committed to mining image features and learning the inter-scale correlation between different upsampling factors. To achieve this, we propose a Multi-scale Dense Cross Network (MDCN), which achieves great performance with fewer parameters and less execution time. MDCN consists of multi-scale dense cross blocks (MDCBs), hierarchical feature distillation block (HFDB), and dynamic reconstruction block (DRB). Among them, MDCB aims to detect multi-scale features and maximize the use of image features flow at different scales, HFDB focuses on adaptively recalibrate channel-wise feature responses to achieve feature distillation, and DRB attempts to reconstruct SR images with different upsampling factors in a single model. It is worth noting that all these modules can run independently. It means that these modules can be selectively plugged into any CNN model to improve model performance. Extensive experiments show that MDCN achieves competitive results in SISR, especially in the reconstruction task with multiple upsampling factors. The code is provided at https://github.com/MIVRC/MDCN-PyTorch.
引用
收藏
页码:2547 / 2561
页数:15
相关论文
共 50 条
  • [31] Multi-Scale Factor Image Super-Resolution Algorithm with Information Distillation Network
    Cheng, Yu
    Chen, Shuai
    Liao, Zeyu
    Zhou, Niujun
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [32] Single Image Super-Resolution Using Multi-scale Convolutional Neural Network
    Jia, Xiaoyi
    Xu, Xiangmin
    Cai, Bolun
    Guo, Kailing
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 149 - 157
  • [33] A deep recursive multi-scale feature fusion network for image super-resolution?
    Liu, Feiqiang
    Yang, Xiaomin
    De Baets, Bernard
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90
  • [34] Quaternion attention multi-scale widening network for endoscopy image super-resolution
    Lin, Junyu
    Huang, Guoheng
    Huang, Jun
    Yuan, Xiaochen
    Zeng, Yiwen
    Shi, Cheng
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (07)
  • [35] A Novel Multi-Scale Adaptive Convolutional Network for Single Image Super-Resolution
    Liu, Peng
    Hong, Ying
    Liu, Yan
    IEEE ACCESS, 2019, 7 : 45191 - 45200
  • [36] A Channel-Wise Multi-Scale Network for Single Image Super-Resolution
    Ji, Jiahuan
    Zhong, Baojiang
    Wu, Qihui
    Ma, Kai-Kuang
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 805 - 809
  • [37] Lightweight Image Super-Resolution via Weighted Multi-Scale Residual Network
    Sun, Long
    Liu, Zhenbing
    Sun, Xiyan
    Liu, Licheng
    Lan, Rushi
    Luo, Xiaonan
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (07) : 1271 - 1280
  • [38] Single image super-resolution with lightweight multi-scale dilated attention network
    Song, Xiaogang
    Pang, Xinchao
    Zhang, Lei
    Lu, Xiaofeng
    Hei, Xinhong
    APPLIED SOFT COMPUTING, 2025, 169
  • [39] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918
  • [40] Efficient Multi-Scale Cosine Attention Transformer for Image Super-Resolution
    Chen, Yuzhen
    Wang, Gencheng
    Chen, Rong
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1442 - 1446