Algorithmically random series and Brownian motion

被引:1
作者
Potgieter, Paul [1 ]
机构
[1] Univ South Africa, Dept Decis Sci, POB 392, ZA-0003 Pretoria, South Africa
关键词
Martin-Lof randomness; Rademacher series; Fourier series; Brownian motion; COMPLEXITY;
D O I
10.1016/j.apal.2018.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider some random series parametrised by Martin-Lof random sequences. The simplest case is that of Rademacher series, independent of a time parameter. This is then extended to the case of Fourier series on the circle with Rademacher coefficients. Finally, a specific Fourier series which has coefficients determined by a computable function is shown to converge to an algorithmically random Brownian motion. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1210 / 1226
页数:17
相关论文
共 20 条
[1]  
ASARIN EA, 1986, AUTOMAT REM CONTR+, V47, P21
[2]   A computable version of the random signs problem and Kolmogorov complexity [J].
Dai, JJ .
STATISTICS & PROBABILITY LETTERS, 2004, 67 (01) :27-31
[3]   The Borel-Cantelli lemmas, probability laws and Kolmogorov complexity [J].
Davie, G .
ANNALS OF PROBABILITY, 2001, 29 (04) :1426-1434
[4]   On kurtz randomness [J].
Downey, RG ;
Griffiths, EJ ;
Reid, S .
THEORETICAL COMPUTER SCIENCE, 2004, 321 (2-3) :249-270
[5]  
Emile Borel M., 1909, Rend. Circ. Mat. Palermo, V27, P247, DOI [10.1007/BF03019651, DOI 10.1007/BF03019651]
[6]   Arithmetical representations of Brownian motion I [J].
Fouché, W .
JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (01) :421-442
[7]   The descriptive complexity of Brownian motion [J].
Fouché, WL .
ADVANCES IN MATHEMATICS, 2000, 155 (02) :317-343
[8]  
Kahane J.-P., 1993, SOME RANDOM SERIES F, V5
[9]   The law of the iterated logarithm for algorithmically random Brownian motion [J].
Kjos-Hanssen, Bjorn ;
Nerode, Anil .
LOGICAL FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, 4514 :310-+
[10]  
Kolmogoroff AN., 1933, Grundbegriffe der Wahrscheinlichkeitsrechnung