Nitrogen Doped Graphene as Metal Free Electrocatalyst for Efficient Oxygen Reduction Reaction in Alkaline Media and Its Application in Anion Exchange Membrane Fuel Cells

被引:81
|
作者
Kumar, M. Praveen [1 ]
Raju, Madhan Mohan [1 ]
Arunchander, A. [2 ]
Selvaraj, Subbulakshmi [1 ]
Kalita, Golap [3 ]
Narayanan, Tharangattu N. [4 ]
Sahu, A. K. [2 ]
Pattanayak, Deepak K. [1 ]
机构
[1] CSIR Cent Electrochem Res Inst, Karaikkudi 630006, Tamil Nadu, India
[2] CSIR Cent Electrochem Res Inst, Madras Unit, Madras 600113, Tamil Nadu, India
[3] Nagoya Inst Technol, Gokisho Cho, Nagoya, Aichi 4668555, Japan
[4] Tata Inst Fundamental Res, TIFR Ctr Interdisciplinary Sci, Hyderabad 500075, Andhra Pradesh, India
关键词
GRAPHITE OXIDE; ELECTRODES; MECHANISM; TRANSPORT; CATALYST; FILMS; BORON; GAS;
D O I
10.1149/2.0541608jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High cost of benchmarked platinum-based electro-catalyst restricts their extensive usage in various energy technologies such as fuel cell. To overcome this, we report a simple, economical and facile synthesis route for a series of edge-defective nitrogen doped graphene (NG) from graphene oxide in the presence of melamine as a nitrogen precursor. The oxygen reduction reaction activity of NG in alkaline medium is studied with varying GO to melamine ratio to optimize the N-content in the graphene sheet. Cyclic voltammograms and linear sweep voltammograms have been recorded in N-2/O-2 saturated 0.1 M aqueous KOH electrolyte. It is observed that N-doped graphene exhibits a favorable formation of hydroxide ions through a four electron transfer process as confirmed from both rotating disk and rotating ring-disk electrode measurements. The stability of the optimized NG catalyst is ascertained by cycling the potential between -0.8 and 0.2 V vs. Ag/AgCl upto10,000 potential cycles and found to have better durability in comparison to the commercial Pt/C catalyst. The resultant N-doped graphene is used as cathode catalyst for fabricating membrane electrode assembly (MEA) and the performance is evaluated in an anion exchange membrane fuel cells (AEMFCs) at 60 degrees C under ambient pressure. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:F848 / F855
页数:8
相关论文
共 50 条
  • [41] Nitrogen-doped graphene-supported Co/CoNx nanohybrid as a highly efficient electrocatalyst for oxygen reduction reaction in an alkaline medium
    Wang, Yi-shu
    Zhang, Bo-wen
    Li, Yong-feng
    Liu, Da-jun
    He, Xing-quan
    Si, Zhen-jun
    RSC ADVANCES, 2014, 4 (107): : 62272 - 62280
  • [42] Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction
    Zhang, Huanhuan
    Liu, Xiangqian
    He, Guangli
    Zhang, Xiaoxing
    Bao, Shujuan
    Hu, Weihua
    JOURNAL OF POWER SOURCES, 2015, 279 : 252 - 258
  • [43] Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction
    Dong, Liang
    Zang, Jianbing
    Su, Jing
    Jia, Yingdan
    Wang, Yanhui
    Lu, Jing
    Xu, Xipeng
    ELECTROCHIMICA ACTA, 2015, 174 : 1017 - 1022
  • [44] A Green Preparation of Nitrogen Doped Graphene Using Urine for Oxygen Reduction in Alkaline Fuel Cells
    Ahmed, Mohammad Shamsuddin
    You, Jung-Min
    Han, Hyoung Soon
    Jeong, Dae-Cheol
    Jeon, Seungwon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (08) : 5722 - 5729
  • [45] 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction
    Xue, Qi
    Ding, Yu
    Xue, Yuanyuan
    Li, Fumin
    Chen, Pei
    Chen, Yu
    CARBON, 2018, 139 : 137 - 144
  • [46] Nitrogen-doped mesoporous network-like carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction
    Guo, Congxiu
    Tong, Xili
    Guo, Xiang-Yun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (48) : 22941 - 22951
  • [47] Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media
    Ratso, Sander
    Kruusenberg, Ivar
    Vikkisk, Merilin
    Joost, Urmas
    Shulga, Eugene
    Kink, Ilmar
    Kallio, Tanja
    Tammeveski, Kaido
    CARBON, 2014, 73 : 361 - 370
  • [48] "Metal-free" electrocatalysis: Quaternary-doped graphene and the alkaline oxygen reduction reaction
    Molina-Garcia, Miguel A.
    Rees, Neil V.
    APPLIED CATALYSIS A-GENERAL, 2018, 553 : 107 - 116
  • [49] N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction
    Zhao, Jujiao
    Shang, Bo
    Zhai, Jun
    NANOMATERIALS, 2021, 11 (09)
  • [50] Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction
    Chen, Sheng
    Bi, Jiyu
    Zhao, Yu
    Yang, Lijun
    Zhang, Chen
    Ma, Yanwen
    Wu, Qiang
    Wang, Xizhang
    Hu, Zheng
    ADVANCED MATERIALS, 2012, 24 (41) : 5593 - 5597