Norm of a Bethe vector and the Hessian of the master function

被引:37
作者
Mukhin, E
Varchenko, A
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
Bethe ansatz; master functions; critical points;
D O I
10.1112/S0010437X05001569
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the norm of a Bethe vector in the s1(r+1) Gaudin model is equal to the Hessian of the corresponding master function at the corresponding critical point. In particular the Bethe vectors corresponding to non-degenerate critical points are non-zero vectors. This result is a byproduct of functorial properties of Bethe vectors studied in this paper. As another byproduct of functoriality we show that the Bethe vectors form a basis in the tensor product of several copies of first and last fundamental sl(r+1)-modules.
引用
收藏
页码:1012 / 1028
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 2000, ADV STUD PURE MATH
[2]  
[Anonymous], 1987, NANKAI LECT MATH PHY, P23
[3]   OFF-SHELL BETHE-ANSATZ EQUATIONS AND N-POINT CORRELATORS IN THE SU(2) WZNW THEORY [J].
BABUJIAN, HM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23) :6981-6990
[4]   OFF-SHELL BETHE-ANSATZ EQUATION FOR GAUDIN MAGNETS AND SOLUTIONS OF KNIZHNIK-ZAMOLODCHIKOV EQUATIONS [J].
BABUJIAN, HM ;
FLUME, R .
MODERN PHYSICS LETTERS A, 1994, 9 (22) :2029-2039
[5]  
BOGOLIUBOV N, 1993, QUANTUM INVERSE SCAT
[6]  
EISENBUD D, 1983, INVENT MATH, V74, P371, DOI 10.1007/BF01394242
[7]   GAUDIN MODEL, BETHE-ANSATZ AND CRITICAL-LEVEL [J].
FEIGIN, B ;
FRENKEL, E ;
RESHETIKHIN, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :27-62
[8]   ON ALGEBRAIC EQUATIONS SATISFIED BY HYPERGEOMETRIC CORRELATORS IN WZW MODELS .2. [J].
FEIGIN, B ;
SCHECHTMAN, V ;
VARCHENKO, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (01) :219-247
[9]   Differential equations compatible with kz equations [J].
Felder G. ;
Markov Y. ;
Tarasov V. ;
Varchenko A. .
Mathematical Physics, Analysis and Geometry, 2000, 3 (2) :139-177
[10]  
FRENKEL E, 1995, 11 INT C MATH PHYS P, P606