CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

被引:133
作者
Mei, Jie [1 ]
Li, Rou-Jing [2 ]
Gao, Wang [3 ]
Cheng, Ming-Ming [1 ]
机构
[1] Nankai Univ, TKLNDST, Coll Comp Sci, Tianjin 300350, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[3] Sci & Technol Complex Syst Control & Intelligent, Beijing 100191, Peoples R China
关键词
Roads; Feature extraction; Image segmentation; Satellites; Convolution; Semantics; Strips; Road extraction; satellite imagery; connectivity attention; strip convolution; topological connectivity; AERIAL IMAGES; LIDAR DATA; POINT;
D O I
10.1109/TIP.2021.3117076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extracting roads from satellite imagery is a promising approach to update the dynamic changes of road networks efficiently and timely. However, it is challenging due to the occlusions caused by other objects and the complex traffic environment, the pixel-based methods often generate fragmented roads and fail to predict topological correctness. In this paper, motivated by the road shapes and connections in the graph network, we propose a connectivity attention network (CoANet) to jointly learn the segmentation and pair-wise dependencies. Since the strip convolution is more aligned with the shape of roads, which are long-span, narrow, and distributed continuously. We develop a strip convolution module (SCM) that leverages four strip convolutions to capture long-range context information from different directions and avoid interference from irrelevant regions. Besides, considering the occlusions in road regions caused by buildings and trees, a connectivity attention module (CoA) is proposed to explore the relationship between neighboring pixels. The CoA module incorporates the graphical information and enables the connectivity of roads are better preserved. Extensive experiments on the popular benchmarks (SpaceNet and DeepGlobe datasets) demonstrate that our proposed CoANet establishes new state-of-the-art results. The source code will be made publicly available at: https://mmcheng.net/coanet/.
引用
收藏
页码:8540 / 8552
页数:13
相关论文
共 69 条
[1]   Learning Pixel-level Semantic Affinity with Image-level Supervision forWeakly Supervised Semantic Segmentation [J].
Ahn, Jiwoon ;
Kwak, Suha .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4981-4990
[2]   Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks [J].
Alshehhi, Rasha ;
Marpu, Prashanth Reddy ;
Woon, Wei Lee ;
Dalla Mura, Mauro .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 130 :139-149
[3]   Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images [J].
Alshehhi, Rasha ;
Marpu, Prashanth Reddy .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 126 :245-260
[4]   Road extraction from aerial images using a region competition algorithm [J].
Amo, M ;
Martínez, F ;
Torre, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) :1192-1201
[5]  
[Anonymous], 2017, ARXIV170206025
[6]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[7]   Automatic finding of main roads in aerial images by using geometric-stochastic models and estimation [J].
Barzohar, M ;
Cooper, DB .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (07) :707-721
[8]   RoadTracer: Automatic Extraction of Road Networks from Aerial Images [J].
Bastani, Favyen ;
He, Songtao ;
Abbar, Sofiane ;
Alizadeh, Mohammad ;
Balakrishnan, Hari ;
Chawla, Sanjay ;
Madden, Sam ;
DeWitt, David .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4720-4728
[9]   Improved Road Connectivity by Joint Learning of Orientation and Segmentation [J].
Batra, Anil ;
Singh, Suriya ;
Pang, Guan ;
Basu, Saikat ;
Jawahar, C., V ;
Paluri, Manohar .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10377-10385
[10]   Convolutional Random Walk Networks for Semantic Image Segmentation [J].
Bertasius, Gedas ;
Torresani, Lorenzo ;
Yu, Stella X. ;
Shi, Jianbo .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6137-6145