Invariant tests for symmetry about an unspecified point based on the empirical characteristic function

被引:60
作者
Henze, N
Klar, B
Meintanis, SG
机构
[1] Univ Karlsruhe, Inst Math Stochast, D-76128 Karlsruhe, Germany
[2] Univ Patras, Dept Engn Sci, GR-26110 Patras, Greece
关键词
test for symmetry; affine invariance; Mardia's measure of multivariate skewness; skewness in the sense of Mori; Rohatgi and Szekely; empirical characteristic function; permutational limit theorem;
D O I
10.1016/S0047-259X(03)00044-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers a flexible class of omnibus affine invariant tests for the hypothesis that a multivariate distribution is symmetric about an unspecified point. The test statistics are weighted integrals involving the imaginary part of the empirical characteristic function of suitably standardized given data, and they have an alternative representation in terms of an L-2-distance of nonparametric kernel density estimators. Moreover, there is a connection with two measures of multivariate skewness. The tests are performed via a permutational procedure that conditions on the data. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:275 / 297
页数:23
相关论文
共 35 条
[2]  
ALEMAYEHU D, P 2K S INT, P1
[3]   TESTING SYMMETRY [J].
ANTILLE, A ;
KERSTING, G ;
ZUCCHINI, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1982, 77 (379) :639-646
[4]   TESTING FOR SPHERICAL-SYMMETRY OF A MULTIVARIATE DISTRIBUTION [J].
BARINGHAUS, L .
ANNALS OF STATISTICS, 1991, 19 (02) :899-917
[5]   Weighted integral test statistics and components of smooth tests of fit [J].
Baringhaus, L ;
Gürtler, N ;
Henze, N .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2000, 42 (02) :179-192
[6]   ON LIMIT BEHAVIOR OF EXTREME ORDER-STATISTICS [J].
BARNDORFFNIELSE.O .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (03) :992-&
[7]  
BHATTACHARYA PK, 1982, BIOMETRIKA, V69, P377, DOI 10.1093/biomet/69.2.377
[9]   SOME RESULTS CONCERNING SYMMETRIC DISTRIBUTIONS [J].
CSORGO, S ;
HEATHCOTE, CR .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1982, 25 (03) :327-335
[10]   TESTING FOR SYMMETRY [J].
CSORGO, S ;
HEATHCOTE, CR .
BIOMETRIKA, 1987, 74 (01) :177-184