Breathing dissipative solitons in optical microresonators

被引:181
作者
Lucas, E. [1 ]
Karpov, M. [1 ]
Guo, H. [1 ]
Gorodetsky, M. L. [2 ,3 ]
Kippenberg, T. J. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IPHYS, CH-1015 Lausanne, Switzerland
[2] Russian Quantum Ctr, Skolkovo 143025, Russia
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
基金
俄罗斯科学基金会; 瑞士国家科学基金会; 俄罗斯基础研究基金会;
关键词
FREQUENCY COMB; SLOWING-DOWN; STABILITY; DYNAMICS; DRIVEN;
D O I
10.1038/s41467-017-00719-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dissipative solitons are self-localised structures resulting from the double balance of dispersion by nonlinearity and dissipation by a driving force arising in numerous systems. In Kerr-nonlinear optical resonators, temporal solitons permit the formation of light pulses in the cavity and the generation of coherent optical frequency combs. Apart from shape-invariant stationary solitons, these systems can support breathing dissipative solitons exhibiting a periodic oscillatory behaviour. Here, we generate and study single and multiple breathing solitons in coherently driven microresonators. We present a deterministic route to induce soliton breathing, allowing a detailed exploration of the breathing dynamics in two microresonator platforms. We measure the relation between the breathing frequency and two control parameters-pump laser power and effective-detuning-and observe transitions to higher periodicity, irregular oscillations and switching, in agreement with numerical predictions. Using a fast detection, we directly observe the spatiotemporal dynamics of individual solitons, which provides evidence of breather synchronisation.
引用
收藏
页数:11
相关论文
共 49 条
[31]   Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators [J].
Lucas, Erwan ;
Guo, Hairun ;
Jost, John D. ;
Karpov, Maxim ;
Kippenberg, Tobias J. .
PHYSICAL REVIEW A, 2017, 95 (04)
[32]   SPATIAL DISSIPATIVE STRUCTURES IN PASSIVE OPTICAL-SYSTEMS [J].
LUGIATO, LA ;
LEFEVER, R .
PHYSICAL REVIEW LETTERS, 1987, 58 (21) :2209-2211
[33]  
MA YC, 1979, STUD APPL MATH, V60, P43
[34]   Microresonator-based solitons for massively parallel coherent optical communications [J].
Marin-Palomo, Pablo ;
Kemal, Juned N. ;
Karpov, Maxim ;
Kordts, Arne ;
Pfeifle, Joerg ;
Pfeiffer, Martin H. P. ;
Trocha, Philipp ;
Wolf, Stefan ;
Brasch, Victor ;
Anderson, Miles H. ;
Rosenberger, Ralf ;
Vijayan, Kovendhan ;
Freude, Wolfgang ;
Kippenberg, Tobias J. ;
Koos, Christian .
NATURE, 2017, 546 (7657) :274-+
[35]   On excitation of breather solitons in an optical microresonator [J].
Matsko, A. B. ;
Savchenkov, A. A. ;
Maleki, L. .
OPTICS LETTERS, 2012, 37 (23) :4856-4858
[36]   Feshbach resonances in Kerr frequency combs [J].
Matsko, Andrey B. ;
Maleki, Lute .
PHYSICAL REVIEW A, 2015, 91 (01)
[37]   CHAOTIC SOLITONS IN A PLASMA DRIVEN BY AN RF FIELD [J].
NOZAKI, K ;
BEKKI, N .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1985, 54 (07) :2363-2366
[38]   SOLITONS AS ATTRACTORS OF A FORCED DISSIPATIVE NONLINEAR SCHRODINGER-EQUATION [J].
NOZAKI, K ;
BEKKI, N .
PHYSICS LETTERS A, 1984, 102 (09) :383-386
[39]   Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs [J].
Parra-Rivas, P. ;
Gomila, D. ;
Matias, M. A. ;
Coen, S. ;
Gelens, L. .
PHYSICAL REVIEW A, 2014, 89 (04)
[40]   Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics [J].
Pfeiffer, Martin H. P. ;
Kordts, Arne ;
Brasch, Victor ;
Zervas, Michael ;
Geiselmann, Michael ;
Jost, John D. ;
Kippenberg, Tobias J. .
OPTICA, 2016, 3 (01) :20-25