Breathing dissipative solitons in optical microresonators

被引:171
作者
Lucas, E. [1 ]
Karpov, M. [1 ]
Guo, H. [1 ]
Gorodetsky, M. L. [2 ,3 ]
Kippenberg, T. J. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IPHYS, CH-1015 Lausanne, Switzerland
[2] Russian Quantum Ctr, Skolkovo 143025, Russia
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
俄罗斯科学基金会; 瑞士国家科学基金会; 俄罗斯基础研究基金会;
关键词
FREQUENCY COMB; SLOWING-DOWN; STABILITY; DYNAMICS; DRIVEN;
D O I
10.1038/s41467-017-00719-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dissipative solitons are self-localised structures resulting from the double balance of dispersion by nonlinearity and dissipation by a driving force arising in numerous systems. In Kerr-nonlinear optical resonators, temporal solitons permit the formation of light pulses in the cavity and the generation of coherent optical frequency combs. Apart from shape-invariant stationary solitons, these systems can support breathing dissipative solitons exhibiting a periodic oscillatory behaviour. Here, we generate and study single and multiple breathing solitons in coherently driven microresonators. We present a deterministic route to induce soliton breathing, allowing a detailed exploration of the breathing dynamics in two microresonator platforms. We measure the relation between the breathing frequency and two control parameters-pump laser power and effective-detuning-and observe transitions to higher periodicity, irregular oscillations and switching, in agreement with numerical predictions. Using a fast detection, we directly observe the spatiotemporal dynamics of individual solitons, which provides evidence of breather synchronisation.
引用
收藏
页数:11
相关论文
共 49 条
  • [1] Akhmediev N., 2008, Dissipative solitons: from optics to biology and medicine
  • [2] EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    AKHMEDIEV, NN
    ELEONSKII, VM
    KULAGIN, NE
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) : 809 - 818
  • [3] Observations of spatiotemporal instabilities of temporal cavity solitons
    Anderson, Miles
    Leo, Francois
    Coen, Stephane
    Erkintalo, Miro
    Murdoch, Stuart G.
    [J]. OPTICA, 2016, 3 (10): : 1071 - 1074
  • [4] Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator
    Bao, Chengying
    Jaramillo-Villegas, Jose A.
    Xuan, Yi
    Leaird, Daniel E.
    Qi, Minghao
    Weiner, Andrew M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (16)
  • [5] Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons
    Barashenkov, IV
    Smirnov, YS
    [J]. PHYSICAL REVIEW E, 1996, 54 (05): : 5707 - 5725
  • [6] Photonic chip-based optical frequency comb using soliton Cherenkov radiation
    Brasch, V.
    Geiselmann, M.
    Herr, T.
    Lihachev, G.
    Pfeiffer, M. H. P.
    Gorodetsky, M. L.
    Kippenberg, T. J.
    [J]. SCIENCE, 2016, 351 (6271) : 357 - 360
  • [7] Self-referenced photonic chip soliton Kerr frequency comb
    Brasch, Victor
    Lucas, Erwan
    Jost, John D.
    Geiselmann, Michael
    Kippenberg, Tobias J.
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e16202 - e16202
  • [8] Dynamical thermal behavior and thermal self-stability of microcavities
    Carmon, T
    Yang, L
    Vahala, KJ
    [J]. OPTICS EXPRESS, 2004, 12 (20): : 4742 - 4750
  • [9] Early Warnings of Regime Shifts: A Whole-Ecosystem Experiment
    Carpenter, S. R.
    Cole, J. J.
    Pace, M. L.
    Batt, R.
    Brock, W. A.
    Cline, T.
    Coloso, J.
    Hodgson, J. R.
    Kitchell, J. F.
    Seekell, D. A.
    Smith, L.
    Weidel, B.
    [J]. SCIENCE, 2011, 332 (6033) : 1079 - 1082
  • [10] Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators
    Chembo, Yanne K.
    Strekalov, Dmitry V.
    Yu, Nan
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (10)