Black-Box Optimization in an Extended Search Space for SAT Solving

被引:1
作者
Zaikin, Oleg [1 ]
Kochemazov, Stepan [1 ]
机构
[1] RAS, ISDCT SB, Irkutsk, Russia
来源
MATHEMATICAL OPTIMIZATION THEORY AND OPERATIONS RESEARCH | 2019年 / 11548卷
基金
俄罗斯基础研究基金会;
关键词
Black-box optimization; Discrete optimization; Monte Carlo method; SAT; Cryptanalysis;
D O I
10.1007/978-3-030-22629-9_28
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Divide-and-Conquer approach is often used to solve hard instances of the Boolean satisfiability problem (SAT). In particular, it implies splitting an original SAT instance into a series of simpler subproblems. If this split satisfies certain conditions, then it is possible to use a stochastic pseudo-Boolean black-box function to estimate the time required for solving an original SAT instance with the chosen decomposition. One can use black-box optimization methods to minimize the function over the space of all possible decompositions. In the present study, we make use of peculiar features which stem from the NP-completeness of the Boolean satisfiability problem to improve this general approach. In particular, we show that the search space over which the black-box function is minimized can be extended by adding solver parameters and the SAT encoding parameters into it. In the computational experiments, we use the SMAC algorithm to optimize such black-box functions for hard SAT instances encoding the problems of cryptanalysis of several stream ciphers. The results show that the proposed approach outperforms the competition.
引用
收藏
页码:402 / 417
页数:16
相关论文
共 40 条
[1]  
[Anonymous], 2010, Evolutionary Computation for Modeling and Optimization
[2]  
Audet C., 2017, Derivative-Free and Blackbox Optimiza-Tion, DOI DOI 10.1007/978-3-319-68913-5
[3]  
Bard G., 2009, ALGEBRAIC CRYPTANALY, DOI [10.1007/978-0-387-88757-9, DOI 10.1007/978-0-387-88757-9]
[4]   Bounded model checking [J].
Biere, Armin .
Frontiers in Artificial Intelligence and Applications, 2009, 185 (01) :457-481
[5]  
Borghoff J, 2011, LECT NOTES COMPUT SC, V6544, P57, DOI 10.1007/978-3-642-19574-7_4
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]  
Courtois N.T., 2012, TATRA MT MATH PUBL, V53, P2
[8]  
De Cannière C, 2008, LECT NOTES COMPUT SC, V4986, P244
[9]  
Eibach T, 2008, LECT NOTES COMPUT SC, V4996, P63, DOI 10.1007/978-3-540-79719-7_7
[10]   SpySMAC: Automated Configuration and Performance Analysis of SAT Solvers [J].
Falkner, Stefan ;
Lindauer, Marius ;
Hutter, Frank .
THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2015, 2015, 9340 :215-222