Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries

被引:23
作者
Deng, Xiang [1 ]
Zhao, Bote [1 ,2 ]
Sha, Yujing [1 ]
Zhu, Yanping [1 ]
Xu, Xiaomin [1 ]
Shao, Zongping [3 ,4 ]
机构
[1] Nanjing Tech Univ, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, 5 Xin Mofan Rd, Nanjing 210009, Jiangsu, Peoples R China
[2] Georgia Inst Technol, Ctr Innovat Fuel Cell & Battery Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Nanjing Tech Univ, Coll Energy, State Key Lab Mat Oriented Chem Engn, 5 Xin Mofan Rd, Nanjing 210009, Jiangsu, Peoples R China
[4] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
关键词
carbon nanotubes; graphene; hierarchically porous carbon; lithium-ion batteries; molten salt synthesis; OXYGEN REDUCTION REACTION; ELECTRODE MATERIALS; STORAGE PROPERTIES; RATE CAPABILITY; DOPED GRAPHENE; HIGH-CAPACITY; NITROGEN; PERFORMANCE; SUPERCAPACITORS; NANOSTRUCTURES;
D O I
10.1002/celc.201500547
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A 3D hierarchically porous architecture built from three different carbon allotropes (graphene, carbon nanotubes, and chitosan- derived porous carbon) has been prepared by using a simple molten-salt synthesis method. The resulting all-carbon nanocomposite is strongly coupled and functionalized with high heteroatom doping (N: 5.3% and O: 13.5 %), which has a high specific surface area of 1614 m(2)g(-1). Based on the unique characteristics mentioned above, and the positive synergistic effects of the allotropes, the nanocomposite exhibits favorable features as an electrode for lithium-ion batteries. An outstanding reversible specific capacity of 1448 mAhg(-1) is achieved at 100 mAg(-1). Even after 200 cycles at 1000 mAg(-1), a high capacity of 749 mAhg(-1) is still retained. The remarkable electrochemical performance makes this 3D functionalized porous all-carbon nanocomposite a promising anode material. This work further opens a novel avenue to develop next-generation all-carbon electrochemical materials.
引用
收藏
页码:698 / 703
页数:6
相关论文
共 42 条
[1]   Supramolecular Polymerization Promoted In Situ Fabrication of Nitrogen-Doped Porous Graphene Sheets as Anode Materials for Li-Ion Batteries [J].
Ai, Wei ;
Jiang, Jian ;
Zhu, Jianhui ;
Fan, Zhanxi ;
Wang, Yanlong ;
Zhang, Hua ;
Huang, Wei ;
Yu, Ting .
ADVANCED ENERGY MATERIALS, 2015, 5 (15)
[2]   Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction [J].
Ai, Wei ;
Luo, Zhimin ;
Jiang, Jian ;
Zhu, Jianhui ;
Du, Zhuzhu ;
Fan, Zhanxi ;
Xie, Linghai ;
Zhang, Hua ;
Huang, Wei ;
Yu, Ting .
ADVANCED MATERIALS, 2014, 26 (35) :6186-+
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries [J].
Byon, Hye Ryung ;
Gallant, Betar M. ;
Lee, Seung Woo ;
Shao-Horn, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :1037-1045
[5]   Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials [J].
Chen, Yuming ;
Li, Xiaoyan ;
Zhou, Xiangyang ;
Yao, Haimin ;
Huang, Haitao ;
Mai, Yiu-Wing ;
Zhou, Limin .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) :2689-2696
[6]   Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors [J].
Deng, Xiang ;
Zhao, Bote ;
Zhu, Liang ;
Shao, Zongping .
CARBON, 2015, 93 :48-58
[7]   Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture [J].
Fan, Xiangqian ;
Zhang, Lingxia ;
Zhang, Guobin ;
Shu, Zhu ;
Shi, Jianlin .
CARBON, 2013, 61 :423-430
[8]   Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage [J].
Fang, Yin ;
Lv, Yingying ;
Che, Renchao ;
Wu, Haoyu ;
Zhang, Xuehua ;
Gu, Dong ;
Zheng, Gengfeng ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1524-1530
[9]   "Salt Templating": A Simple and Sustainable Pathway toward Highly Porous Functional Carbons from Ionic Liquids [J].
Fechler, Nina ;
Fellinger, Tim-Patrick ;
Antonietti, Markus .
ADVANCED MATERIALS, 2013, 25 (01) :75-79
[10]   Generation of B-Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications [J].
Han, Jongwoo ;
Zhang, Li Li ;
Lee, Seungjun ;
Oh, Junghoon ;
Lee, Kyoung-Seok ;
Potts, Jeffrey R. ;
Ji, Junyi ;
Zhao, Xin ;
Ruoff, Rodney S. ;
Park, Sungjin .
ACS NANO, 2013, 7 (01) :19-26