Blow-up results for systems of nonlinear Schrodinger equations with quadratic interaction

被引:9
作者
Dinh, Van Duong [1 ,2 ]
Forcella, Luigi [3 ,4 ]
机构
[1] Univ Lille, Lab Paul Painleve, UMR 8524, CNRS, F-59655 Villeneuve Dascq, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh City, Vietnam
[3] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
Nonlinear Schrodinger systems; Quadratic-type interactions; Blow-up; Grow-up; GROUND-STATE; SCATTERING; NLS; DYNAMICS;
D O I
10.1007/s00033-021-01607-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish blow-up results for systems of NLS equations with quadratic interaction in anisotropic spaces. We precisely show finite time blow-up or grow-up for cylindrical symmetric solutions. With our construction, we moreover prove some polynomial lower bounds on the kinetic energy of global solutions in the mass-critical case, which in turn implies grow-up along any diverging time sequence. Our analysis extends to general NLS systems with quadratic interactions, and it also provides improvements of known results in the radial case.
引用
收藏
页数:26
相关论文
共 29 条
[1]   Sharp conditions for scattering and blow-up for a system of NLS arising in optical materials with χ3 nonlinear response [J].
Ardila, Alex H. ;
Van Duong Dinh ;
Forcella, Luigi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (11) :2134-2170
[2]  
Bellazzini J, ARXIV200502894
[3]   Asymptotic dynamic for Dipolar Quantum Gases below the ground state energy threshold [J].
Bellazzini, Jacopo ;
Forcella, Luigi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (06) :1958-1998
[4]  
Cazenave T., 2003, SEMILINEAR SCHRODING
[5]   SOBOLEV INEQUALITIES WITH SYMMETRY [J].
Cho, Yonggeun ;
Ozawa, Tohru .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) :355-365
[6]   Solitons in quadratic media [J].
Colin, M. ;
Di Menza, L. ;
Saut, J. C. .
NONLINEARITY, 2016, 29 (03) :1000-1035
[7]   Stability of solitary waves for a system of nonlinear Schrodinger equations with three wave interaction [J].
Colin, M. ;
Colin, Th. ;
Ohta, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06) :2211-2226
[8]  
Dinh V.D., ARXIV200905933
[9]   A new proof of scattering below the ground state for the non-radial focusing NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) :1805-1825
[10]  
Hamano M., ARXIV180512245