Dynamic defect as nonradiative recombination center in semiconductors

被引:6
作者
Bang, Junhyeok [1 ,5 ]
Meng, Sheng [2 ,3 ]
Zhang, S. B. [4 ]
机构
[1] Korea Basic Sci Inst, Spin Engn Phys Team, Daejeon 305806, South Korea
[2] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[5] Chungbuk Natl Univ, Dept Phys, Cheongju 28644, South Korea
基金
新加坡国家研究基金会;
关键词
DX CENTERS; PERSISTENT PHOTOCONDUCTIVITY; ELECTRONIC-STRUCTURE; GAAS; DONOR; TRANSITIONS; EFFICIENCY; SURFACES; MODEL;
D O I
10.1103/PhysRevB.100.245208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theory of nonradiative recombination (NRR) with an emphasis on the so far little-explored dynamic effect in the process. We show that it can significantly enhance the NRR rate over that of a static midgap level as suggested by the Shockley-Read-Hall theory, whereby offering an alternative explanation to the long-lasting discrepancy between theory and experiment for semiconductors. As an illustration, we show that dynamic NRR can take place at the DX center in Si-doped GaAs which, combined with a modified ABC model at high carrier-density limit, makes it possible to verify the theory directly by experiment.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Understanding the Nonradiative Charge Recombination in Organic Photovoltaics: From Molecule to Device
    Kong, Yibo
    Chen, Hongzheng
    Zuo, Lijian
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (03)
  • [22] Energies for muonium defect levels in semiconductors
    Lichti, R. L.
    Chow, K. H.
    Cox, S. F. J.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (5-7) : 816 - 819
  • [23] Surface recombination in doped semiconductors: Effect of light excitation power and of surface passivation
    Cadiz, F.
    Paget, D.
    Rowe, A. C. H.
    Berkovits, V. L.
    Ulin, V. P.
    Arscott, S.
    Peytavit, E.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (10)
  • [24] An Effective Method for Recovering Nonradiative Recombination Loss in Scalable Organic Solar Cells
    Xing, Zhi
    Meng, Xiangchuan
    Sun, Rui
    Hu, Ting
    Huang, Zengqi
    Min, Jie
    Hu, Xiaotian
    Chen, Yiwang
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (21)
  • [25] Local Background Hole Density Drives Nonradiative Recombination in Tin Halide Perovskites
    Westbrook, Robert J. E.
    Taddei, Margherita
    Giridharagopal, Rajiv
    Jiang, Meihuizi
    Gallagher, Shaun M.
    Guye, Kathryn N.
    Warga, Aaron I.
    Haque, Saif A.
    Ginger, David S.
    ACS ENERGY LETTERS, 2024, 9 (02) : 732 - 739
  • [26] Analysis for nonradiative recombination loss and radiation degradation of Si space solar cells
    Yamaguchi, Masafumi
    Lee, Kan-Hua
    Araki, Kenji
    Kojima, Nobuaki
    Okuno, Yasuki
    Imaizumi, Mitsuru
    PROGRESS IN PHOTOVOLTAICS, 2021, 29 (01): : 98 - 108
  • [27] Hydration Accelerates Radiative and Nonradiative Recombination in Small TiO2 Nanoclusters
    Recio-Poo, Miguel
    Shakiba, Mohammad
    Illas, Francesc
    Bromley, Stefan T.
    Akimov, Alexey V.
    Morales-Garcia, Angel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (03) : 1806 - 1823
  • [28] Chemical Trend of Nonradiative Recombination in Cu(In,Ga)Se2 Alloys
    Dou, Baoying
    Falletta, Stefano
    Neugebauer, Joerg
    Freysoldt, Christoph
    Zhang, Xie
    Wei, Su -Huai
    PHYSICAL REVIEW APPLIED, 2023, 19 (05)
  • [29] Quantifying and Understanding Voltage Losses Due to Nonradiative Recombination in Bulk Heterojunction Organic Solar Cells with Low Energetic Offsets
    Rosenthal, Katie D.
    Hughes, Michael P.
    Luginbuhl, Benjamin R.
    Ran, Niva A.
    Karki, Akchheta
    Ko, Seo-Jin
    Hu, Huawei
    Wang, Ming
    Ade, Harald
    Thuc-Quyen Nguyen
    ADVANCED ENERGY MATERIALS, 2019, 9 (27)
  • [30] Optimized hybrid functionals for defect calculations in semiconductors
    Deak, Peter
    Lorke, Michael
    Aradi, Balint
    Frauenheim, Thomas
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (13)