Dynamic defect as nonradiative recombination center in semiconductors

被引:7
作者
Bang, Junhyeok [1 ,5 ]
Meng, Sheng [2 ,3 ]
Zhang, S. B. [4 ]
机构
[1] Korea Basic Sci Inst, Spin Engn Phys Team, Daejeon 305806, South Korea
[2] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[5] Chungbuk Natl Univ, Dept Phys, Cheongju 28644, South Korea
基金
新加坡国家研究基金会;
关键词
DX CENTERS; PERSISTENT PHOTOCONDUCTIVITY; ELECTRONIC-STRUCTURE; GAAS; DONOR; TRANSITIONS; EFFICIENCY; SURFACES; MODEL;
D O I
10.1103/PhysRevB.100.245208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theory of nonradiative recombination (NRR) with an emphasis on the so far little-explored dynamic effect in the process. We show that it can significantly enhance the NRR rate over that of a static midgap level as suggested by the Shockley-Read-Hall theory, whereby offering an alternative explanation to the long-lasting discrepancy between theory and experiment for semiconductors. As an illustration, we show that dynamic NRR can take place at the DX center in Si-doped GaAs which, combined with a modified ABC model at high carrier-density limit, makes it possible to verify the theory directly by experiment.
引用
收藏
页数:8
相关论文
共 50 条
[11]   Origin and Suppression of Nonradiative Recombination in Inorganic Halide Perovskites [J].
Ji, Qun ;
Fang, Qianglong ;
Wei, Xiaoli ;
Zhang, Yehui ;
Wu, Yilei ;
Gao, Xinying ;
Li, Xiaoyan ;
Ning, Cai ;
Ju, Ming-Gang .
NANO LETTERS, 2025, 25 (14) :5875-5880
[12]   Rapid Trapping as the Origin of Nonradiative Recombination in Semiconductor Nanocrystals [J].
Pevere, Federico ;
Sangghaleh, Fatemeh ;
Bruhn, Benjamin ;
Sychugov, Ilya ;
Linnros, Jan .
ACS PHOTONICS, 2018, 5 (08) :2990-2996
[13]   Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites [J].
Zhang, Xie ;
Turiansky, Mark E. ;
Shen, Jimmy-Xuan ;
Van de Walle, Chris G. .
PHYSICAL REVIEW B, 2020, 101 (14)
[14]   Radiative and Nonradiative Recombination Processes in AlGaN Quantum Wells on Epitaxially Laterally Overgrown AlN/Sapphire from 10 to 500 K [J].
Ishii, Ryota ;
Tanaka, Shiki ;
Susilo, Norman ;
Wernicke, Tim ;
Kneissl, Michael ;
Funato, Mitsuru ;
Kawakami, Yoichi .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2024, 261 (11)
[15]   Defect-assisted nonradiative recombination in Cu2ZnSnSe4: A comparative study with Cu2ZnSnS4 [J].
Xu, Yonggang ;
Yang, Ji-Hui ;
Chen, Shiyou ;
Gong, Xin-Gao .
PHYSICAL REVIEW MATERIALS, 2021, 5 (02)
[16]   Ternary Organic Solar Cells with Small Nonradiative Recombination Loss [J].
Xie, Yuanpeng ;
Li, Tengfei ;
Guo, Jing ;
Bi, Pengqing ;
Xue, Xiaonan ;
Ryu, Hwa Sook ;
Cai, Yunhao ;
Min, Jie ;
Huo, Lijun ;
Hao, Xiaotao ;
Woo, Han Young ;
Zhan, Xiaowei ;
Sun, Yanming .
ACS ENERGY LETTERS, 2019, 4 (05) :1196-1203
[17]   Vacancies and defect levels in III-V semiconductors [J].
Tahini, H. A. ;
Chroneos, A. ;
Murphy, S. T. ;
Schwingenschloegl, U. ;
Grimes, R. W. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (06)
[18]   Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact [J].
Peng, Wei ;
Mao, Kaitian ;
Cai, Fengchun ;
Meng, Hongguang ;
Zhu, Zhengjie ;
Li, Tieqiang ;
Yuan, Shaojie ;
Xu, Zijian ;
Feng, Xingyu ;
Xu, Jiahang ;
McGehee, Michael D. ;
Xu, Jixian .
SCIENCE, 2023, 379 (6633) :683-690
[19]   Effect of nonradiative recombination centers on photoluminescence efficiency in quantum dot structures [J].
M. V. Maksimov ;
D. S. Sizov ;
A. G. Makarov ;
I. N. Kayander ;
L. V. Asryan ;
A. E. Zhukov ;
V. M. Ustinov ;
N. A. Cherkashin ;
N. A. Bert ;
N. N. Ledentsov ;
D. Bimberg .
Semiconductors, 2004, 38 :1207-1211
[20]   Understanding the Nonradiative Charge Recombination in Organic Photovoltaics: From Molecule to Device [J].
Kong, Yibo ;
Chen, Hongzheng ;
Zuo, Lijian .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (03)