X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10-70 GPa

被引:20
作者
Foster, J. M. [1 ]
Comley, A. J. [1 ]
Case, G. S. [1 ]
Avraam, P. [1 ]
Rothman, S. D. [1 ]
Higginbotham, A. [2 ]
Floyd, E. K. R. [1 ]
Gumbrell, E. T. [1 ]
Luis, J. J. D. [1 ]
McGonegle, D. [3 ]
Park, N. T. [1 ]
Peacock, L. J. [1 ]
Poulter, C. P. [1 ]
Suggit, M. J. [3 ]
Wark, J. S. [3 ]
机构
[1] AWE Aldermaston, Reading RG7 4PR, Berks, England
[2] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England
[3] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
CONSTITUTIVE MODEL; DEFORMATION;
D O I
10.1063/1.4994167
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report experiments in which powder-diffraction data were recorded from polycrystalline vanadium foils, shock-compressed to pressures in the range of 10-70 GPa. Anisotropic strain in the compressed material is inferred from the asymmetry of Debye-Scherrer diffraction images and used to infer residual strain and yield strength (residual von Mises stress) of the vanadium sample material. We find residual anisotropic strain corresponding to yield strength in the range of 1.2 GPa-1.8 GPa for shock pressures below 30 GPa, but significantly less anisotropy of strain in the range of shock pressures above this. This is in contrast to our simulations of the experimental data using a multi-scale crystal plasticity strength model, where a significant yield strength persists up to the highest pressures we access in the experiment. Possible mechanisms that could contribute to the dynamic response of vanadium that we observe for shock pressures >= 30 GPa are discussed.
引用
收藏
页数:13
相关论文
共 44 条
[1]   A multiscale strength model for extreme loading conditions [J].
Barton, N. R. ;
Bernier, J. V. ;
Becker, R. ;
Arsenlis, A. ;
Cavallo, R. ;
Marian, J. ;
Rhee, M. ;
Park, H. -S. ;
Remington, B. A. ;
Olson, R. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[2]   A MULTI-SCALE STRENGTH MODEL WITH PHASE TRANSFORMATION [J].
Barton, Nathan ;
Arsenlis, Athanasios ;
Rhee, Moono ;
Marian, Jaime ;
Bernier, Joel V. ;
Tang, Meijie ;
Yang, Lin .
SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
[3]   THE STRENGTH OF METALS [J].
BRAGG, L .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1949, 45 (01) :125-130
[4]   Shock deformation of face-centred-cubic metals on subnanosecond timescales [J].
Bringa, M. ;
Rosolankova, K. ;
Rudd, R. E. ;
Remington, B. A. ;
Wark, J. S. ;
Duchaineau, M. ;
Kalantar, H. ;
Hawreliak, J. ;
Belak, J. .
NATURE MATERIALS, 2006, 5 (10) :805-809
[5]   Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility [J].
Celliers, PM ;
Bradley, DK ;
Collins, GW ;
Hicks, DG ;
Boehly, TR ;
Armstrong, WJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (11) :4916-4929
[6]  
Chhabildas LC, 1986, METALLURGICAL APPL S, P429
[7]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[8]   Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined using In Situ Broadband X-Ray Laue Diffraction [J].
Comley, A. J. ;
Maddox, B. R. ;
Rudd, R. E. ;
Prisbrey, S. T. ;
Hawreliak, J. A. ;
Orlikowski, D. A. ;
Peterson, S. C. ;
Satcher, J. H. ;
Elsholz, A. J. ;
Park, H. -S. ;
Remington, B. A. ;
Bazin, N. ;
Foster, J. M. ;
Graham, P. ;
Park, N. ;
Rosen, P. A. ;
Rothman, S. R. ;
Higginbotham, A. ;
Suggit, M. ;
Wark, J. S. .
PHYSICAL REVIEW LETTERS, 2013, 110 (11)
[9]   Modeling of the dynamic inelasticity of tantalum single crystal under ramp wave loading [J].
Ding, J. L. ;
Asay, J. R. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[10]   Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J].
Dubrovinsky, Leonid ;
Dubrovinskaia, Natalia ;
Prakapenka, Vitali B. ;
Abakumov, Artem M. .
NATURE COMMUNICATIONS, 2012, 3