A decentralized approach to multi-robot formation initialization

被引:3
|
作者
Archibald, J. K. [1 ]
Frost, R. L. [1 ]
机构
[1] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
关键词
mobile robots; formation initialization; satisficing theory; multiagent; coordination; cooperative control;
D O I
10.2316/Journal.206.2007.4.206-3010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel solution to the formation initialization problem, in which autonomous mobile robots must arrange themselves into a specific geometric configuration without centralized control, without explicit inter-agent communication, and using only information from local sensors which is necessarily incomplete. Our solution to this fundamental multi-robot coordination problem is based on satisficing theory, a paradigm for decision making in which individual options are evaluated by comparing potential gains with projected costs. An option can be justified as adequate if its benefits outweigh its costs. In multi-agent systems inclined to cooperation, satisficing offers advantages relative to traditional utility-maximization approaches. We present experimental results that demonstrate cooperative, emergent multi-agent behaviour. We compare the performance of various enhancements within the satisficing framework across a collection of scenarios that differ in starting positions, target formations, number of agents involved, and the presence of static obstacles. The results suggest that satisficing is an attractive alternative for the synthesis of cooperative multi-robot systems.
引用
收藏
页码:304 / 312
页数:9
相关论文
共 50 条
  • [1] Multi-robot Cooperative Pathfinding: A Decentralized Approach
    Wei, Changyun
    Hindriks, Koen V.
    Jonker, Catftolijn M.
    MODERN ADVANCES IN APPLIED INTELLIGENCE, IEA/AIE 2014, PT I, 2014, 8481 : 21 - 31
  • [2] Decentralized time-varying formation control for multi-robot systems
    Antonelli, Gianluca
    Arrichiello, Filippo
    Caccavale, Fabrizio
    Marino, Alessandro
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (07) : 1029 - 1043
  • [3] Decentralized centroid and formation control for multi-robot systems
    Antonelli, Gianluca
    Arrichiello, Filippo
    Caccavale, Fabrizio
    Marino, Alessandro
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 3511 - 3516
  • [4] A Decentralized Formation Building Algorithm with Obstacle Avoidance for Multi-Robot Systems
    Baranzadeh, Ahmad
    Nazarzehi, Vali
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 2513 - 2518
  • [5] Decentralized Task and Path Planning for Multi-Robot Systems
    Chen, Yuxiao
    Rosolia, Ugo
    Ames, Aaron D.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 4337 - 4344
  • [6] A switched-system approach to formation control and heading consensus for multi-robot systems
    Jin, Jingfu
    Ramirez, Juan-Pablo
    Wee, SungGil
    Lee, DongHa
    Kim, YoonGu
    Gans, Nicholas
    INTELLIGENT SERVICE ROBOTICS, 2018, 11 (02) : 207 - 224
  • [7] Formation Control of Multi-robot Systems
    Liu, Shuai
    Chen, Chunlin
    Xie, Lihua
    Chang, Yeong-Hwa
    11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 1057 - 1062
  • [8] Graph Neural Networks for Decentralized Multi-Robot Path Planning
    Li, Qingbiao
    Gama, Fernando
    Ribeiro, Alejandro
    Prorok, Amanda
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 11785 - 11792
  • [9] Decentralized multi-robot allocation of tasks with temporal and precedence constraints
    Nunes, Ernesto
    McIntire, Mitchell
    Gini, Maria
    ADVANCED ROBOTICS, 2017, 31 (22) : 1193 - 1207
  • [10] Study on Formation Control of Multi-Robot Systems
    Wang Guanghua
    Li Deyi
    Gan Wenyan
    Jia Peng
    2013 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM DESIGN AND ENGINEERING APPLICATIONS (ISDEA), 2013, : 1335 - 1339