A revisit to W2n-theory of super-parabolic backward stochastic partial differential equations in Rd

被引:28
作者
Du, Kai [1 ]
Meng, Qingxin [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Dept Finance & Control Sci, Shanghai 200433, Peoples R China
[2] Huzhou Teacher Coll, Dept Math Sci, Huzhou 31300, Peoples R China
关键词
Backward stochastic partial differential equations; Cauchy problems; Sobolev spaces; ADAPTED SOLUTION; CONTROLLABILITY; SPDE;
D O I
10.1016/j.spa.2010.06.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Backward stochastic partial differential equations of parabolic type with variable coefficients are considered in the whole Euclidean space. Improved existence and uniqueness results are given in the Sobolev space H-n (=W-2(n)) under weaker assumptions than those used by X. Zhou [X. Zhou, A duality analysis on stochastic partial differential equations, J. Funct. Anal. 103 (1992) 275-293]. As an application, a comparison theorem is obtained. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1996 / 2015
页数:20
相关论文
共 23 条
[2]   Carleman estimates and controllability of linear stochastic heat equations [J].
Barbu, V ;
Rascanu, A ;
Tessitore, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (02) :97-120
[3]  
Bensoussan A., 1983, Stochastics, V9, P169, DOI 10.1080/17442508308833253
[4]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[5]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[6]   UTILITY MAXIMIZATION WITH HABIT FORMATION: DYNAMIC PROGRAMMING AND STOCHASTIC PDEs [J].
Englezos, Nikolaos ;
Karatzas, Ioannis .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (02) :481-520
[7]   On semi-linear degenerate backward stochastic partial differential equations [J].
Hu, Y ;
Ma, J ;
Yong, JM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (03) :381-411
[8]  
HU Y, 1991, STOCH ANAL APPL, V9, P445, DOI DOI 10.1080/07362999108809250
[9]  
KRYLOV N. V., 1981, Journal of Soviet mathematics, V14, P1233
[10]   On linear, degenerate backward stochastic partial differential equations [J].
Ma, J ;
Yong, JM .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (02) :135-170