Surface and Structure Characteristics, Self-Assembling, and Solvent Compatibility of Holocellulose Nanofibrils

被引:52
作者
Gu, Jin [1 ]
Hsieh, You-Lo [1 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
关键词
holocellulose nanofibril; TEMPO oxidation; self-assembly; redispersion; hydrophobicity; rice straw; TEMPO-MEDIATED OXIDATION; RICE STRAW; MICROFIBRILLATED CELLULOSE; SILICA; HEMICELLULOSE; SOLUBILITY; FIBRILS; NETWORK; XYLANS;
D O I
10.1021/am5079489
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rice straw holocellulose was TEMPO-oxidized and mechanically defibrillated to produce holocellulose nanofibrils (HCNFs) at 33.7% yield (based on original rice straw mass), 4.6% higher yield than cellulose nanofibril (CNF) generated by the same process from pure rice straw cellulose. HCNFs were similar in lateral dimensions (2.92 nm wide, 1.36 nm thick) as CNF, but longer, less surface oxidized (69 vs 85%), and negatively charged (0.80 vs 1.23 mmol/g). HCNFs also showed higher affinity to hydrophobic surfaces than CNFs while still attracted to hydrophilic surfaces. By omitting hemicellulose/silica dissolution step, the two-step 2:1 toluene/ethanol extraction and acidified NaClO2 (1.4%, pH 3-4, 70 degrees C, 6 h) delignification process for holocellulose was more streamlined than that of pure cellulose, while the resulting amphiphilic HCNFs were more hydrophobic and self-assembled into much finer nanofibers, presenting unique characteristics for new potential applications.
引用
收藏
页码:4192 / 4201
页数:10
相关论文
共 35 条
[1]   Effect of silica content on rice straw ruminal degradation [J].
Agbagla-Dohnani, A ;
Nozière, P ;
Gaillard-Martinie, B ;
Puard, M ;
Doreau, M .
JOURNAL OF AGRICULTURAL SCIENCE, 2003, 140 :183-192
[2]   Bioethanol production from rice straw: An overview [J].
Binod, Parameswaran ;
Sindhu, Raveendran ;
Singhania, Reeta Rani ;
Vikram, Surender ;
Devi, Lalitha ;
Nagalakshmi, Satya ;
Kurien, Noble ;
Sukumaran, Rajeev K. ;
Pandey, Ashok .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4767-4774
[3]   Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents [J].
Bochek, AM .
RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2003, 76 (11) :1711-1719
[4]   Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps [J].
Chaker, Ashraf ;
Alila, Sabrine ;
Mutje, Pere ;
Vilar, Manuel Rei ;
Boufi, Sami .
CELLULOSE, 2013, 20 (06) :2863-2875
[5]   Capillary flow as the cause of ring stains from dried liquid drops [J].
Deegan, RD ;
Bakajin, O ;
Dupont, TF ;
Huber, G ;
Nagel, SR ;
Witten, TA .
NATURE, 1997, 389 (6653) :827-829
[6]   The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR [J].
Duchesne, I ;
Hult, E ;
Molin, U ;
Daniel, G ;
Iversen, T ;
Lennholm, H .
CELLULOSE, 2001, 8 (02) :103-111
[7]  
Hannuksela T, 2003, HEMICELLULOSES SCI T, P222
[8]   The ultrastructure of wood from a solubility parameter point of view [J].
Hansen, CM ;
Bjorkman, A .
HOLZFORSCHUNG, 1998, 52 (04) :335-344
[9]   The xyloglucan-cellulose assembly at the atomic scale [J].
Hanus, J ;
Mazeau, K .
BIOPOLYMERS, 2006, 82 (01) :59-73
[10]   An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers [J].
Henriksson, M. ;
Henriksson, G. ;
Berglund, L. A. ;
Lindstrom, T. .
EUROPEAN POLYMER JOURNAL, 2007, 43 (08) :3434-3441