TRANSLATIONALLY INVARIANT KINK SOLUTIONS OF DISCRETE φ4 MODELS

被引:5
作者
Baimova, J. A. [1 ]
Bebikhov, Yu V. [2 ]
Dmitriev, S. V. [1 ]
Khare, A. [3 ]
Potekaev, A. I. [4 ]
机构
[1] Russian Acad Sci, Inst Met Superplast Problems, Ufa 450001, Russia
[2] II Polzunov Altai State Tech Univ, Barnaul, Russia
[3] Inst Phys, Bhubaneswar, India
[4] Tomsk State Univ, VD Kuznetsov Siberian Phys Tech Inst, Tomsk 634050, Russia
关键词
discrete models; translationally invariant structures; KLEIN-GORDON MODELS; DISCRETIZATIONS;
D O I
10.1007/s11182-010-9409-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The properties of translationally invariant kinks in two discrete phi(4) models are compared with those of the kinks in a classical discrete model. The translationally invariant kink solutions can be found randomly with respect to the lattice sites, i.e., their Peierls-Nabarro potential is exactly equal to zero. It is shown that these solutions have a Goldstone mode, that is, they can move along the lattice at vanishingly small velocities. Thus, the translationally invariant kink is not trapped by the lattice and can be accelerated by an arbitrary small external field and, having an increased mobility, can transfer a range of physical quantities: matter, energy, momentum, etc.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 23 条
  • [11] High-speed kinks in a generalized discrete φ4 model
    Dmitriev, Sergey V.
    Khare, Avinash
    Kevrekidis, Panayotis G.
    Saxena, Avadh
    Hadzievski, Ljupco
    [J]. PHYSICAL REVIEW E, 2008, 77 (05):
  • [12] Exact static solutions to a translationally invariant discrete φ4 model
    Dmitriev, Sergey V.
    Kevrekidis, Panayotis G.
    Khare, Avinash
    Saxena, Avadh
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) : 6267 - 6286
  • [13] Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential
    Dmitriev, SV
    Kevrekidis, PG
    Yoshikawal, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (35): : 7617 - 7627
  • [14] How to find the conserved quantities of nonlinear discrete equations
    Hirota, R
    Kimura, K
    Yahagi, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10377 - 10386
  • [15] From integrable lattices to non-QRT mappings
    Joshi, N.
    Grammaticos, B.
    Tamizhmani, T.
    Ramani, A.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2006, 78 (01) : 27 - 37
  • [16] On a class of discretizations of Hamiltonian nonlinear partial differential equations
    Kevrekidis, PG
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 183 (1-2) : 68 - 86
  • [17] INTEGRABLE MAPPINGS AND SOLITON-EQUATIONS .2.
    QUISPEL, GRW
    ROBERTS, JAG
    THOMPSON, CJ
    [J]. PHYSICA D, 1989, 34 (1-2): : 183 - 192
  • [18] Comparative study of different discretizations of the φ4 model
    Roy, Ishani
    Dmitriev, Sergey V.
    Kevrekidis, Panayotis G.
    Saxena, Avadh
    [J]. PHYSICAL REVIEW E, 2007, 76 (02):
  • [19] Kinks in dipole chains
    Speight, J. M.
    Zolotaryuk, Y.
    [J]. NONLINEARITY, 2006, 19 (06) : 1365 - 1382
  • [20] KINK DYNAMICS IN A NOVEL DISCRETE SINE-GORDON SYSTEM
    SPEIGHT, JM
    WARD, RS
    [J]. NONLINEARITY, 1994, 7 (02) : 475 - 484