TRANSLATIONALLY INVARIANT KINK SOLUTIONS OF DISCRETE φ4 MODELS

被引:5
作者
Baimova, J. A. [1 ]
Bebikhov, Yu V. [2 ]
Dmitriev, S. V. [1 ]
Khare, A. [3 ]
Potekaev, A. I. [4 ]
机构
[1] Russian Acad Sci, Inst Met Superplast Problems, Ufa 450001, Russia
[2] II Polzunov Altai State Tech Univ, Barnaul, Russia
[3] Inst Phys, Bhubaneswar, India
[4] Tomsk State Univ, VD Kuznetsov Siberian Phys Tech Inst, Tomsk 634050, Russia
关键词
discrete models; translationally invariant structures; KLEIN-GORDON MODELS; DISCRETIZATIONS;
D O I
10.1007/s11182-010-9409-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The properties of translationally invariant kinks in two discrete phi(4) models are compared with those of the kinks in a classical discrete model. The translationally invariant kink solutions can be found randomly with respect to the lattice sites, i.e., their Peierls-Nabarro potential is exactly equal to zero. It is shown that these solutions have a Goldstone mode, that is, they can move along the lattice at vanishingly small velocities. Thus, the translationally invariant kink is not trapped by the lattice and can be accelerated by an arbitrary small external field and, having an increased mobility, can transfer a range of physical quantities: matter, energy, momentum, etc.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 23 条
  • [1] Translationally invariant discrete kinks from one-dimensional maps
    Barashenkov, IV
    Oxtoby, OF
    Pelinovsky, DE
    [J]. PHYSICAL REVIEW E, 2005, 72 (03):
  • [2] Solitons and their interactions in classical field theory
    Belova, TI
    Kudryavtsev, AE
    [J]. USPEKHI FIZICHESKIKH NAUK, 1997, 167 (04): : 377 - 406
  • [3] Continuum limit of lattice approximation schemes
    Bender, CM
    Tovbis, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (07) : 3700 - 3717
  • [4] BOGOMOLNYI EV, 1976, D, V24, P449
  • [5] Exact solitary wave solutions for a discrete λφ4 field theory in 1+1 dimensions -: art. no. 036605
    Cooper, F
    Khare, A
    Mihaila, B
    Saxena, A
    [J]. PHYSICAL REVIEW E, 2005, 72 (03):
  • [6] Exact static solutions for discrete φ4 models free of the Peierls-Nabarro barrier:: Discretized first-integral approach
    Dmitriev, S. V.
    Kevrekidis, P. G.
    Yoshikawa, N.
    Frantzeskakis, D. J.
    [J]. PHYSICAL REVIEW E, 2006, 74 (04):
  • [7] Standard nearest-neighbour discretizations of Klein-Gordon models cannot preserve both energy and linear momentum
    Dmitriev, S. V.
    Kevrekidis, P. G.
    Yoshikawa, N.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (23): : 7217 - 7226
  • [8] Long-period states of a crystal finite-size-particle system
    Dmitriev, S. V.
    Potekaev, A. I.
    Samsonov, A. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2009, 52 (06) : 622 - 639
  • [9] DYNAMIC LONG-PERIOD NANOSIZED STATES IN LATTICE STRUCTURE
    Dmitriev, S. V.
    Nazarov, A. A.
    Potekaev, A. I.
    Pshenichnyuk, A. I.
    Khadeeva, L. Z.
    [J]. RUSSIAN PHYSICS JOURNAL, 2009, 52 (02) : 132 - 137
  • [10] Localized vibrational modes in an A 3 B two-dimensional perfect crystal
    Dmitriev, S. V.
    Medvedev, N. N.
    Mulyukov, R. R.
    Pozhidaeva, O. V.
    Potekaev, A. I.
    Starostenkov, M. D.
    [J]. RUSSIAN PHYSICS JOURNAL, 2008, 51 (08) : 858 - 865