Electrides as a New Platform of Topological Materials

被引:98
作者
Hirayama, Motoaki [1 ,2 ]
Matsuishi, Satoru [3 ]
Hosono, Hideo [3 ]
Murakami, Shuichi [1 ,3 ]
机构
[1] Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
[2] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan
[3] Tokyo Inst Technol, Mat Res Ctr Element Strategy, Midori Ku, 4259 Nagatsuta Cho, Yokohama, Kanagawa 2268503, Japan
关键词
TRANSITION; SCANDIUM; INSULATORS; ANIONS; NODES; LINE; GAS;
D O I
10.1103/PhysRevX.8.031067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent discoveries of topological phases realized in electronic states in solids have revealed an important role of topology, which ubiquitously appears in various materials in nature. Many well-known materials have turned out to be topological materials, and this new viewpoint of topology has opened a new horizon in material science. In this paper, we find that electrides are suitable for achieving various topological phases, including topological insulating and topological semimetal phases. In the electrides, in which electrons serve as anions, the bands occupied by the anionic electrons lie near the Fermi level, because the anionic electrons are weakly bound by the lattice. This property of the electrides is favorable for achieving band inversions needed for topological phases, and, thus, the electrides are prone to topological phases. From such a point of view, we find many topological electrides, Y2C [nodal-line semimetal (NLS)], Sc2C (insulator with a pi Zak phase), Sr2Bi (NLS), HfBr (quantum spin Hall system), and LaBr (quantum anomalous Hall insulator), by using ab initio calculation. The close relationship between the electrides and the topological materials is useful in material science in both fields.
引用
收藏
页数:13
相关论文
共 70 条
[1]   Topological Insulator Materials [J].
Ando, Yoichi .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (10)
[2]   The GW method [J].
Aryasetiawan, F ;
Gunnarsson, O .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (03) :237-312
[3]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[4]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[5]   Topological quantum chemistry [J].
Bradlyn, Barry ;
Elcoro, L. ;
Cano, Jennifer ;
Vergniory, M. G. ;
Wang, Zhijun ;
Felser, C. ;
Aroyo, M. I. . ;
Bernevig, B. Andrei .
NATURE, 2017, 547 (7663) :298-305
[6]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[7]   The ionic &ITversus&IT metallic nature of 2D electrides: a density-functional description [J].
Dale, Stephen G. ;
Johnson, Erin R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (40) :27343-27352
[8]   Intrinsic large gap quantum anomalous Hall insulators in LaX (X = Br,Cl,I) [J].
Dolui, Kapildeb ;
Ray, Sujay ;
Das, Tanmoy .
PHYSICAL REVIEW B, 2015, 92 (20)
[9]   Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J].
Drozdov, A. P. ;
Eremets, M. I. ;
Troyan, I. A. ;
Ksenofontov, V. ;
Shylin, S. I. .
NATURE, 2015, 525 (7567) :73-+
[10]  
EISENMANN B, 1975, Z NATURFORSCH B, VB 30, P66