Sulfate Freeze-Thaw Resistance of Magnesium Potassium Phosphate Cement Mortar according to Hydration Age

被引:6
|
作者
Ji, Rong-Jian [1 ]
Li, Tao [2 ]
Yang, Jian-Ming [2 ]
Xu, Jun [3 ]
机构
[1] Yangzhou Polytech Inst, Coll Architecture Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] San Jiang Univ, Sch Civil Engn, Nanjing 210012, Peoples R China
[3] Jiangsu Univ Sci & Technol, Coll Civil Engn & Architecture, Zhenjiang 212000, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
magnesium potassium phosphate cement; hydration age; freeze-thaw resistance; sulfate corrosion; strength; volume deformation; water absorption; PASTE;
D O I
10.3390/ma15124192
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Concrete structures can be degraded by exposure to environmental stressors such as freeze-thaw cycling and salt corrosion. Magnesium potassium phosphate cement (MKPC) mortar is useful for the rapid repair of such structures but must acquire environmental resistance rapidly. In this study, the freeze-thaw resistance of MKPC mortar specimens of different hydration ages was tested in water and a 5% Na2SO4 solution. The strength, volume deformation, and water absorption rates were compared with those of full-age MKPC mortar specimens (28 d). The phase composition and microscopic morphology of the MKPC mortar specimens before and after corrosion were observed, and the corrosion-resistance mechanism was analyzed. After 225 freeze-thaw cycles in water and sulfate solution, the strength residual rates of the early-age specimen (1 d) were higher than those of the full-age specimen (28 d). The degree of strength attenuation in the 1 d specimen was lower in the sulfate environment than in the water environment. After 225 freeze-thaw cycles, the volume expansion rates of 1 d specimens in water or sulfate were 0.487% and 0.518%, respectively, while those of 28 d specimens were 0.963% and 1.308%. The comparison shows that the 1 d specimen had significantly better deformation resistance under freeze-thaw than the 28 d specimen. After 225 freeze-thaw cycles, the water absorption rates of 1 d specimens were 1.95% and 1.64% in water and sulfate solution, respectively, while those of 28 d specimens were 2.20% and 1.83%. This indicates that freeze-thaw cycling has a greater effect on the pore structure of fully aged mortar than on early-age mortar (1 d). Therefore, MKPC mortar is suitable for the rapid repair of concrete structures in harsh environments. The results form a theoretical basis for winter emergency repair projects. They also further the understanding of the application of MKPC-based materials in extreme environments.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Experimental study on freeze-thaw resistance of mortar: An attempt to modify hydrophobic materials with hydrophobic nano-silica
    Pang, Yuyang
    Wang, Hailiang
    Yang, Lin
    Tang, Qun
    Li, Haofei
    Zhang, Jinliang
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [42] A composite phase change material for improving the freeze-thaw resistance performance of cement mortars
    Yu, Bentian
    Li, Shuangyang
    Zhu, Huaitai
    Jiang, Qi
    Wang, Dayan
    Chen, Yanfei
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 387
  • [43] Effects of different mineral admixtures on the properties of magnesium potassium phosphate cement mortar
    Ma, Shaokun
    Yang, Ruifeng
    Lu, Zhao
    Lu, Hu
    Zhao, Weihang
    Chen, Hongqi
    Liu, Meilin
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [44] Study on improving interface bonding performance of magnesium potassium phosphate cement mortar
    Zhang, J.
    Ji, Y.
    Xue, Q.
    Zhou, Y.
    Jin, C.
    Xu, Z.
    MATERIALES DE CONSTRUCCION, 2021, 71 (343)
  • [45] Fabrication of all-dimensional superhydrophobic mortar with enhanced waterproof ability and freeze-thaw resistance
    Wang, Wei
    Wang, Shanlin
    Yao, Daozhou
    Wang, Xikui
    Yu, Xinquan
    Zhang, Youfa
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 238
  • [46] Improving the freeze-thaw resistance of mortar by a combined use of superabsorbent polymer and air entraining agent
    Xu, Yanqun
    Yuan, Qiang
    Dai, Xiaodi
    Xiang, Gongkun
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [47] Influence of freeze-thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber
    Wang, Jiabin
    Niu, Ditao
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 122 : 628 - 636
  • [48] Quantitative characterization of the early hydration of magnesium potassium phosphate cement: In-situ experiment with low field NMR
    Ma, Shanliang
    Zhang, Zengqi
    Liu, Xiaoming
    Han, Fanghui
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 377
  • [49] Effects of recycled mortar powder on the properties and microstructure of magnesium potassium phosphate cement
    Cheng, Xiangyi
    Liu, Shichang
    Wen, Jing
    Feng, Taotao
    Chen, Guangming
    Tan, Yongshan
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 403
  • [50] Hydration and Properties of Magnesium Potassium Phosphate Cement Modified by Granulated Blast-Furnace Slag: Influence of Fineness
    Liu, Kuisheng
    Ma, Shanliang
    Zhang, Zengqi
    Han, Fanghui
    MATERIALS, 2022, 15 (03)