Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1

被引:14
作者
Isabel Gonzalez-Siso, Maria [1 ]
Tourino, Alba [1 ]
Vizoso, Angel [1 ]
Pereira-Rodriguez, Angel [1 ]
Rodriguez-Belmonte, Esther [1 ]
Becerra, Manuel [1 ]
Esperanza Cerdan, Maria [1 ]
机构
[1] Univ A Coruna, Grp Invest EXPRELA, Dept Biol Celular & Mol, Fac Ciencias, La Coruna 15071, Spain
关键词
OXIDATIVE STRESS-RESPONSE; CYTOSOLIC NADPH; GENE-EXPRESSION; YEAST; MITOCHONDRIA; DEHYDROGENASE; REOXIDATION; MUTATIONS; NAD(P)H; GLUCOSE;
D O I
10.1111/1751-7915.12160
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (klndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the klndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K.lactis mitochondria. Permeabilized cells of the klndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The klndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The klndi1 mutation shifts the K.lactis metabolism from respiratory to fermentative: the klndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the klndi1 mutant for bioethanol production from waste cheese whey lactose was proved.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 48 条
[1]   The mitochondrial alcohol dehydrogenase adh3p is involved in a redox shuttle in Saccharomyces cerevisiae [J].
Bakker, BM ;
Bro, C ;
Kötter, P ;
Luttik, MAH ;
van Dijken, JP ;
Pronk, JT .
JOURNAL OF BACTERIOLOGY, 2000, 182 (17) :4730-4737
[2]   Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae [J].
Bakker, BM ;
Overkamp, KM ;
van Maris, AJA ;
Kötter, P ;
Luttik, MAH ;
van Dijken, JP ;
Pronk, JT .
FEMS MICROBIOLOGY REVIEWS, 2001, 25 (01) :15-37
[3]   Mitochondria, oxidants, and aging [J].
Balaban, RS ;
Nemoto, S ;
Finkel, T .
CELL, 2005, 120 (04) :483-495
[4]   New secretory strategies for Kluyveromyces lactis β-galactosidase [J].
Becerra, M ;
Prado, SD ;
Siso, MIG ;
Cerdán, ME .
PROTEIN ENGINEERING, 2001, 14 (05) :379-386
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Mitochondrial release of the NADH dehydrogenase Ndi1 induces apoptosis in yeast [J].
Cui, Yixian ;
Zhao, Shanke ;
Wu, Zhihao ;
Dai, Pinghua ;
Zhou, Bing .
MOLECULAR BIOLOGY OF THE CELL, 2012, 23 (22) :4373-4382
[7]   What do we know about the yeast strains from the Brazilian fuel ethanol industry? [J].
Della-Bianca, Bianca Eli ;
Basso, Thiago Olitta ;
Stambuk, Boris Ugarte ;
Basso, Luiz Carlos ;
Gombert, Andreas Karoly .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (03) :979-991
[8]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[9]   Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3 [J].
Diniz, Raphael H. S. ;
Rodrigues, Marina Q. R. B. ;
Fietto, Luciano G. ;
Passos, Flavia M. L. ;
Silveira, Wendel B. .
BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2014, 3 (02) :111-117
[10]  
Duarte M., 2007, COMPLEX 1 ALTERNATIV, P55