Feature Visualization Based Stacked Convolutional Neural Network for Human Body Detection in a Depth Image

被引:3
作者
Liu, Xiao [1 ,2 ,3 ]
Mei, Ling [1 ,2 ,3 ]
Yang, Dakun [1 ,2 ,3 ]
Lai, Jianhuang [1 ,2 ,3 ]
Xie, Xiaohua [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Guangzhou 510006, Peoples R China
[2] Guangdong Key Lab Informat Secur Technol, Guangzhou, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT II | 2018年 / 11257卷
关键词
Human detection; Depth image; Feature visualization Sparse auto-encoder; Convolutional neural network; REPRESENTATIONS;
D O I
10.1007/978-3-030-03335-4_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human body detection is a key technology in the fields of biometric recognition, and the detection in a depth image is rather challenging due to serious noise effects and lack of texture information. For addressing this issue, we propose the feature visualization based stacked convolutional neural network (FV-SCNN), which can be trained by a two-layer unsupervised learning. Specifically, the next CNN layer is obtained by optimizing a sparse auto-encoder (SAE) on the reconstructed visualization of the former to capture robust high-level features. Experiments on SZU Depth Pedestrian dataset verify that the proposed method can achieve favorable accuracy for body detection. The key of our method is that the CNN-based feature visualization actually pursues a data-driven processing for a depth map, and significantly alleviates the influences of noise and corruptions on body detection.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 2011, 3 CHIN C INT VIS SUR
[2]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[3]  
Ikemura S, 2011, LECT NOTES COMPUT SC, V6495, P25, DOI 10.1007/978-3-642-19282-1_3
[4]  
Lee G.-H., 2016, THEORY APPL SMART CA, P265, DOI [10.1007/978-94-017-9987-4 12, DOI 10.1007/978-94-017-9987-412]
[5]  
Mahendran A, 2015, PROC CVPR IEEE, P5188, DOI 10.1109/CVPR.2015.7299155
[6]   Geodesic-based probability propagation for efficient optical flow [J].
Mei, Ling ;
Chen, Zeyu ;
Lai, Jianhuang .
ELECTRONICS LETTERS, 2018, 54 (12) :758-759
[7]   WLD-TOP Based Algorithm against Face Spoofing Attacks [J].
Mei, Ling ;
Yang, Dakun ;
Feng, Zhanxiang ;
Lai, Jianhuang .
BIOMETRIC RECOGNITION, CCBR 2015, 2015, 9428 :135-142
[8]  
Spinello L, 2011, IEEE INT C INT ROBOT, P3838, DOI 10.1109/IROS.2011.6048835
[9]   Sparse auto-encoder based feature learning for human body detection in depth image [J].
Su, Song-Zhi ;
Liu, Zhi-Hui ;
Xu, Su-Ping ;
Li, Shao-Zi ;
Ji, Rongrong .
SIGNAL PROCESSING, 2015, 112 :43-52
[10]  
Szegedy Christian, 2015, P IEEE C COMP VIS PA, P1, DOI [10.1109/cvpr.2015.7298594, DOI 10.1109/CVPR.2015.7298594]