共 49 条
An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula
被引:117
作者:
Zhao, Qiao
[1
]
Gallego-Giraldo, Lina
[1
]
Wang, Huanzhong
[1
]
Zeng, Yining
[2
,3
]
Ding, Shi-You
[2
,3
]
Chen, Fang
[1
,3
]
Dixon, Richard A.
[1
,3
]
机构:
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
[2] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA
[3] BESC, Oak Ridge, TN USA
基金:
美国国家科学基金会;
关键词:
NAC transcription factor;
lignification;
cell wall development;
stomatal guard cell;
anther dehiscence;
bioenergy;
INSERTIONAL MUTAGENESIS;
MONOLIGNOL BIOSYNTHESIS;
CELLULOSE SYNTHESIS;
DOWN-REGULATION;
FACTORS NST1;
LIGNIN;
EXPRESSION;
MODEL;
SATIVA;
GENES;
D O I:
10.1111/j.1365-313X.2010.04223.x
中图分类号:
Q94 [植物学];
学科分类号:
071001 ;
摘要:
P>To identify genes controlling secondary cell wall biosynthesis in the model legume Medicago truncatula, we screened a Tnt1 retrotransposon insertion mutant population for plants with altered patterns of lignin autofluorescence. From more than 9000 R1 plants screened, four independent lines were identified with a total lack of lignin in the interfascicular region. The mutants also showed loss of lignin in phloem fibers, reduced lignin in vascular elements, failure in anther dehiscence and absence of phenolic autofluorescence in stomatal guard cell walls. Microarray and PCR analyses confirmed that the mutations were caused by the insertion of Tnt1 in a gene annotated as encoding a NAM (no apical meristem)-like protein (here designated Medicago truncatula NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1, MtNST1). MtNST1 is the only family member in Medicago, but has three homologs (AtNST1-AtNST3) in Arabidopsis thaliana, which function in different combinations to control cell wall composition in stems and anthers. Loss of MtNST1 function resulted in reduced lignin content, associated with reduced expression of most lignin biosynthetic genes, and a smaller reduction in cell wall polysaccharide content, associated with reduced expression of putative cellulose and hemicellulose biosynthetic genes. Acid pre-treatment and cellulase digestion released significantly more sugars from cell walls of nst1 mutants compared with the wild type. We discuss the implications of these findings for the development of alfalfa (Medicago sativa) as a dedicated bioenergy crop.
引用
收藏
页码:100 / 114
页数:15
相关论文