Friedel sum rule at finite temperature in hot dense plasmas

被引:15
作者
Faussurier, Gerald [1 ,2 ]
Blancard, Christophe [1 ,2 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] Univ Paris Saclay, LMCE, CEA, F-91680 Bruyeres Le Chatel, France
关键词
PRESSURE IONIZATION; PURGATORIO; EQUATION; MODEL; ION;
D O I
10.1063/5.0022605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the notion of Friedel sum rule at finite temperature in hot dense plasmas. Using the average-atom model, we establish expressions for the Friedel sum rule at zero and finite temperature using non-relativistic or relativistic approaches. Formulas are also given using the Born approximation for the phase shifts. Numerical examples are provided. The Friedel sum rule is a stringent test of the internal consistency of a quantum average-atom model. The question of normalization of free wavefunctions is also discussed.
引用
收藏
页数:11
相关论文
共 39 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, V10th
[2]  
[Anonymous], 1992, PHYS ATOMS MOL
[3]  
[Anonymous], 1992, ATOMIC SPECTRA RAD T
[4]   Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted chain approximation [J].
Anta, JA ;
Louis, AA .
PHYSICAL REVIEW B, 2000, 61 (17) :11400-11410
[6]   PRESSURE IONIZATION IN THE SPHERICAL ION-CELL MODEL OF DENSE-PLASMAS AND A PRESSURE FORMULA IN THE RELATIVISTIC PAULI APPROXIMATION [J].
BLENSKI, T ;
ISHIKAWA, K .
PHYSICAL REVIEW E, 1995, 51 (05) :4869-4881
[7]   DERIVATION OF QUANTAL HYPER-NETTED CHAIN EQUATION FROM KOHN-SHAM THEORY [J].
CHIHARA, J .
PROGRESS OF THEORETICAL PHYSICS, 1978, 59 (01) :76-86
[8]   DENSITY-FUNCTIONAL THEORY OF HYDROGEN PLASMAS [J].
DHARMAWARDANA, MWC ;
PERROT, F .
PHYSICAL REVIEW A, 1982, 26 (04) :2096-2104
[9]   The UCL distorted wave code [J].
Eissner, W .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 114 (1-3) :295-341
[10]   Electrical resistivity calculations in dense plasmas [J].
Faussurier, Gerald ;
Blancard, Christophe .
PHYSICAL REVIEW E, 2019, 100 (03)