PT symmetry on the lattice:: the quantum group invariant XXZ spin chain

被引:63
作者
Korff, Christian
Weston, Robert
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1088/1751-8113/40/30/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the PT-symmetry of the quantum group invariant XXZ chain. We show that the PT-operator commutes with the quantum group action and also discuss the transformation properties of the Bethe wavefunction. We exploit the fact that the Hamiltonian is an element of the Temperley-Lieb algebra in order to give an explicit and exact construction of an operator that ensures quasi-Hermiticity of the model. This construction relies on earlier ideas related to quantum group reduction. We then employ this result in connection with the quantum analogue of Schur-Weyl duality to introduce a dual pair of C-operators, both of which have closed algebraic expressions. These are novel, exact results connecting the research areas of integrable lattice systems and non-Hermitian Hamiltonians.
引用
收藏
页码:8845 / 8872
页数:28
相关论文
共 29 条
[1]   SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT ;
BAXTER, RJ ;
QUISPEL, GRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6397-6409
[2]   PT-symmetric extension of the Korteweg-de Vries equation [J].
Bender, Carl M. ;
Brody, Dorje C. ;
Chen, Jun-Hua ;
Furlan, Elisabetta .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) :F153-F160
[3]  
BENDER CM, 2007, HEPTH0703096
[4]  
Chari V., 1994, A Guide to Quantum Groups
[5]  
DOREY P, 2007, HEPTH0703066
[6]   Non-Hermitian Hamiltonians with real eigenvalues coupled to electric fields: From the time-independent to the time-dependent quantum mechanical formulation [J].
Faria, C. F. M. ;
Fring, A. .
LASER PHYSICS, 2007, 17 (04) :424-437
[8]  
GEYER H, 2006, J PHYS A, V39, P9963
[9]  
GUNTHER U, 2007, PROJECTIVE HILBERT S
[10]   ON THE 2-POINT CORRELATION-FUNCTIONS FOR THE U(Q)[SU(2)] INVARIANT SPIN ONE-HALF HEISENBERG CHAIN AT ROOTS OF UNITY [J].
HINRICHSEN, H ;
MARTIN, PP ;
RITTENBERG, V ;
SCHEUNERT, M .
NUCLEAR PHYSICS B, 1994, 415 (03) :533-556