Development of near infrared sensors: Detection of influential factors by the AComDim method

被引:10
作者
Amat, S. [1 ,2 ]
Dupuy, N. [1 ]
Kister, J. [1 ]
Rutledge, D. N. [3 ]
机构
[1] Univ Aix Marseille 3, Grp SCC, Equipe AD2EM, CNRS,UMR 6263,iSm2, F-13397 Marseille 20, France
[2] SP3H, F-13545 Aix En Provence, France
[3] AgroParisTech, F-75231 Paris 05, France
关键词
Near Infrared (NIR); Sensors; Design of Experiment (DOE); Multi-block analysis; PRINCIPAL COMPONENT ANALYSIS; PREDICTION;
D O I
10.1016/j.aca.2010.06.037
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The development of near infrared (NIR) sensors has to go through different steps of testing. Once a prototype is ready to be used, it is necessary to evaluate and optimize the experimental conditions and the data collection, in terms of accuracy, repeatability, reproducibility and speed. This paper studies the effects of controllable experimental factors on the quality of the spectral response, to determine the influence of each instrumental parameter and to improve the predictions obtained from the collected data. The AComDim method, based on the multi-block analysis of ANOVA matrices, was used here to evaluate the impact of experimental factors on the responses from the different sensors tested. (C) 2010 Elsevier By. All rights reserved.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 14 条
[1]   Prediction of source rock origin by chemometric analysis of Fourier transform infrared-attenuated total reflectance spectra of oil petroleum: Evaluation of aliphatic and aromatic fractions by self-modeling mixture analysis [J].
Abbas, O ;
Dupuy, N ;
Rebufa, C ;
Vrielynck, L ;
Kister, J ;
Permanyer, A .
APPLIED SPECTROSCOPY, 2006, 60 (03) :304-314
[2]  
BERTRAND D, 2008, SAISIR TOOLBOX CHEMO
[3]   Engine autoignition: The relationship between octane numbers and autoignition delay times [J].
Bradley, Derek ;
Head, R. A. .
COMBUSTION AND FLAME, 2006, 147 (03) :171-184
[4]   Common components and specific weight analysis and multiple co-inertia analysis applied to the coupling of several measurement techniques [J].
Hanafi, M. ;
Mazerolles, G. ;
Dufour, E. ;
Qannari, E. M. .
JOURNAL OF CHEMOMETRICS, 2006, 20 (05) :172-183
[5]   Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry [J].
Harrington, PD ;
Vieira, NE ;
Chen, P ;
Espinoza, J ;
Nien, JK ;
Romero, R ;
Yergey, AL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 82 (1-2) :283-293
[6]   Analysis of variance-principal component analysis: A soft tool for proteomic discovery [J].
Harrington, PD ;
Vieira, NE ;
Espinoza, J ;
Nien, JK ;
Romero, R ;
Yergey, AL .
ANALYTICA CHIMICA ACTA, 2005, 544 (1-2) :118-127
[7]  
LUNATI A, 2006, Patent No. 2006100377
[8]  
LUNATI A, DEER
[9]  
*MATHWORKS INC, 2008, NAT
[10]   Octane number prediction for gasoline blends [J].
Pasadakis, N ;
Gaganis, V ;
Foteinopoulos, C .
FUEL PROCESSING TECHNOLOGY, 2006, 87 (06) :505-509