Lyapunov exponents of hybrid stochastic heat equations

被引:14
作者
Bao, Jianhai [1 ]
Mao, Xuerong [2 ]
Yuan, Chenggui [1 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
关键词
Stochastic heat equation; Markov chain; Lyapunov exponent; Stabilization; Large deviation; PARTIAL-DIFFERENTIAL-EQUATIONS; STABILIZATION; SYSTEMS;
D O I
10.1016/j.sysconle.2011.10.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate a class of hybrid stochastic heat equations. By explicit formulae of solutions, we not only reveal the sample Lyapunov exponents but also discuss the pth moment Lyapnov exponents. Moreover, several examples are established to demonstrate that unstable (deterministic or stochastic) dynamical systems can be stabilized by Markovian switching. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 18 条
[1]  
ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
[2]   Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities [J].
Bloemker, D. ;
Hairer, M. ;
Pavliotis, G. A. .
NONLINEARITY, 2007, 20 (07) :1721-1744
[3]   On stabilization of partial differential equations by noise [J].
Caraballo, T ;
Liu, K ;
Mao, X .
NAGOYA MATHEMATICAL JOURNAL, 2001, 161 :155-170
[4]   SOME RESULTS ON LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACES. [J].
Da Prato, G. ;
Iannelli, M. ;
Tubaro, L. .
Stochastics, 1982, 6 (02) :105-116
[5]  
Da Prato G., 1992, STOCHASTIC EQUATIONS, DOI 10.1017/CBO9780511666223
[6]   ASYMPTOTIC EVALUATION OF CERTAIN MARKOV PROCESS EXPECTATIONS FOR LARGE TIME .4. [J].
DONSKER, MD ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (02) :183-212
[7]   ON THE LARGE DEVIATION FUNCTIONS OF MARKOV-CHAINS [J].
GONG, GL ;
QIAN, MP .
ACTA MATHEMATICA SCIENTIA, 1988, 8 (02) :199-209
[8]  
Khasminskii R., 1980, STOCHASTIC STABILITY
[9]  
Kwiecinska A.A., 2001, PROBAB MATH STAT-POL, V21, P405
[10]   Stabilization of evolution equations by noise [J].
Kwiecinska, AA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (10) :3067-3074