AN OPTIMAL-ORDER ERROR ESTIMATE FOR A FINITE DIFFERENCE METHOD TO TRANSIENT DEGENERATE ADVECTION-DIFFUSION EQUATIONS

被引:0
作者
Lu, Tongchao [1 ]
Jia, Jinhong [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
convergence analysis; degenerate advection-diffusion equations; finite difference methods; optimal-order error estimates; DISCONTINUOUS GALERKIN METHOD; LOCALIZED ADJOINT METHODS; ELLAM SCHEME; MISCIBLE DISPLACEMENT; CONVERGENCE ANALYSIS; MFEM APPROXIMATIONS; UNIFORM ESTIMATE; FAMILY; ELEMENT; MMOC;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
:We prove an optimal-order error estimate in a degenerate-diffusion weighted energy norm for implicit Euler and Crank-Nicolson finite difference methods to two-dimensional time-dependent advection-diffusion equations with degenerate diffusion. In the estimate, the generic constants depend only on certain Sobolev norms of the true solution but not on the lower bound of the diffusion. This estimate, combined with a known stability estimate of the true solution of the governing partial differential equations, yields an optimal-order estimate of the finite difference methods, in which the generic constants depend only on the Sobolev norms of the initial and right-hand side data.
引用
收藏
页码:56 / 72
页数:17
相关论文
共 43 条
[1]  
Al-Lawatia M, 2007, INT J COMPUT SCI MAT, V1, P467
[2]  
[Anonymous], RES FRONTIERS APPL M
[3]  
[Anonymous], 1986, Curve and Surface Fitting
[4]  
[Anonymous], 1977, Fundamentals of numericl reservoir simulation
[5]  
[Anonymous], 1989, BOOLEAN METHODS INTE
[6]  
Aziz H., 1979, PETROLEUM RESERVOIR
[7]   Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems [J].
Bause, M ;
Knabner, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :1954-1984
[8]  
Bear J., 1972, Dynamics of Fluids in Porous Media
[9]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[10]  
DeVore R. A., 1993, Constructive Approximation