Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods

被引:83
作者
Xu, Lina [1 ,2 ]
Tetteh, Giles [1 ,3 ]
Lipkova, Jana [1 ,3 ]
Zhao, Yu [1 ,3 ]
Li, Hongwei [1 ,3 ]
Christ, Patrick [1 ,3 ]
Piraud, Marie [1 ,3 ]
Buck, Andreas [4 ]
Shi, Kuangyu [2 ]
Menze, Bjoern H. [1 ,3 ]
机构
[1] Tech Univ Munich, Dept Informat, Munich, Germany
[2] Tech Univ Munich, Klinikum Rechts Isar, Dept Nucl Med, Munich, Germany
[3] Tech Univ Munich, Inst Med Engn, Munich, Germany
[4] Univ Wurzburg, Dept Nucl Med, Wurzburg, Germany
关键词
COMPUTER-ASSISTED DIAGNOSIS; CONSENSUS STATEMENT; F-18-FDG PET/CT; NEURAL-NETWORKS; AIDED DETECTION; TUMOR SIZE; CT; SEGMENTATION; MRI; QUANTIFICATION;
D O I
10.1155/2018/2391925
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The identification of bone lesions is crucial in the diagnostic assessment of multiple myeloma (MM). Ga-68-Pentixafbr PET/Cr can capture the abnormal molecular expression of CXCR-4 in addition to anatomical changes. However, whole-body detection of dozens of lesions on hybrid imaging is tedious and error prone. It is even more difficult to identify lesions with a large heterogeneity. This study employed deep learning methods to automatically combine characteristics of PET and CT for whole-body MM bone lesion detection in a 3D manner. Two convolutional neural networks (CNNs), V-Net and W-Net, were adopted to segment and detect the lesions. The feasibility of deep learning for lesion detection on Ga-68-Pentixafor PET/CT was first verified on digital phantoms generated using realistic PET simulation methods. Then the proposed methods were evaluated on real Ga-68-Pentixafor PET/CT scans of MM patients. The preliminary results showed that deep learning method can leverage multimodal information for spatial feature representation, and W-Net obtained the best result for segmentation and lesion detection. It also outperformed traditional machine learning methods such as random forest classifier (RF), k-Nearest Neighbors (k-NN), and support vector machine (SVM). The proof-of-concept study encourages further development of deep learning approach for MM lesion detection in population study.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Anbeek Petronella., 2008, MIDAS Journal
[2]   Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images [J].
Bagci, Ulas ;
Udupa, Jayaram K. ;
Mendhiratta, Neil ;
Foster, Brent ;
Xu, Ziyue ;
Yao, Jianhua ;
Chen, Xinjian ;
Mollura, Daniel J. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (08) :929-945
[3]   Tumour size measurement in an oncology clinical trial: Comparison between off-site and on-site measurements [J].
Belton, AL ;
Saini, S ;
Liebermann, K ;
Boland, GW ;
Halpern, EF .
CLINICAL RADIOLOGY, 2003, 58 (04) :311-314
[4]   Myeloma bone disease [J].
Callander, NS ;
Roodman, GD .
SEMINARS IN HEMATOLOGY, 2001, 38 (03) :276-285
[5]   Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group [J].
Cavo, Michele ;
Terpos, Evangelos ;
Nanni, Cristina ;
Moreau, Philippe ;
Lentzsch, Suzanne ;
Zweegman, Sonja ;
Hillengass, Jens ;
Engelhardt, Monika ;
Usmani, Saad Z. ;
Vesole, David H. ;
San-Miguel, Jesus ;
Kumar, Shaji K. ;
Richardson, Paul G. ;
Mikhael, Joseph R. ;
da Costa, Fernando Leal ;
Dimopoulos, Meletios-Athanassios ;
Zingaretti, Chiara ;
Abildgaard, Niels ;
Goldschmidt, Hartmut ;
Orlowski, Robert Z. ;
Chng, Wee Joo ;
Einsele, Hermann ;
Lonial, Sagar ;
Barlogie, Bart ;
Anderson, Kenneth C. ;
Rajkumar, S. Vincent ;
Durie, Brian G. M. ;
Zamagni, Elena .
LANCET ONCOLOGY, 2017, 18 (04) :E206-E217
[6]   Direct Parametric Image Reconstruction in Reduced Parameter Space for Rapid Multi-Tracer PET Imaging [J].
Cheng, Xiaoyin ;
Li, Zhoulei ;
Liu, Zhen ;
Navab, Nassir ;
Huang, Sung-Cheng ;
Keller, Ulrich ;
Ziegler, Sibylle I. ;
Shi, Kuangyu .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) :1498-1512
[7]  
Christ Patrick Ferdinand, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P415, DOI 10.1007/978-3-319-46723-8_48
[8]  
Collins Conor D, 2005, Cancer Imaging, V5 Spec No A, pS119, DOI 10.1102/1470-7330.2005.0033
[9]  
Delso G, 2011, J NUCL MED, V52, P1914, DOI 10.2967/jnumed.111.092726
[10]   International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma [J].
Dimopoulos, M. ;
Terpos, E. ;
Comenzo, R. L. ;
Tosi, P. ;
Beksac, M. ;
Sezer, O. ;
Siegel, D. ;
Lokhorst, H. ;
Kumar, S. ;
Rajkumar, S. V. ;
Niesvizky, R. ;
Moulopoulos, L. A. ;
Durie, B. G. M. .
LEUKEMIA, 2009, 23 (09) :1545-1556