Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods

被引:78
作者
Xu, Lina [1 ,2 ]
Tetteh, Giles [1 ,3 ]
Lipkova, Jana [1 ,3 ]
Zhao, Yu [1 ,3 ]
Li, Hongwei [1 ,3 ]
Christ, Patrick [1 ,3 ]
Piraud, Marie [1 ,3 ]
Buck, Andreas [4 ]
Shi, Kuangyu [2 ]
Menze, Bjoern H. [1 ,3 ]
机构
[1] Tech Univ Munich, Dept Informat, Munich, Germany
[2] Tech Univ Munich, Klinikum Rechts Isar, Dept Nucl Med, Munich, Germany
[3] Tech Univ Munich, Inst Med Engn, Munich, Germany
[4] Univ Wurzburg, Dept Nucl Med, Wurzburg, Germany
关键词
COMPUTER-ASSISTED DIAGNOSIS; CONSENSUS STATEMENT; F-18-FDG PET/CT; NEURAL-NETWORKS; AIDED DETECTION; TUMOR SIZE; CT; SEGMENTATION; MRI; QUANTIFICATION;
D O I
10.1155/2018/2391925
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The identification of bone lesions is crucial in the diagnostic assessment of multiple myeloma (MM). Ga-68-Pentixafbr PET/Cr can capture the abnormal molecular expression of CXCR-4 in addition to anatomical changes. However, whole-body detection of dozens of lesions on hybrid imaging is tedious and error prone. It is even more difficult to identify lesions with a large heterogeneity. This study employed deep learning methods to automatically combine characteristics of PET and CT for whole-body MM bone lesion detection in a 3D manner. Two convolutional neural networks (CNNs), V-Net and W-Net, were adopted to segment and detect the lesions. The feasibility of deep learning for lesion detection on Ga-68-Pentixafor PET/CT was first verified on digital phantoms generated using realistic PET simulation methods. Then the proposed methods were evaluated on real Ga-68-Pentixafor PET/CT scans of MM patients. The preliminary results showed that deep learning method can leverage multimodal information for spatial feature representation, and W-Net obtained the best result for segmentation and lesion detection. It also outperformed traditional machine learning methods such as random forest classifier (RF), k-Nearest Neighbors (k-NN), and support vector machine (SVM). The proof-of-concept study encourages further development of deep learning approach for MM lesion detection in population study.
引用
收藏
页数:11
相关论文
共 52 条
  • [1] Anbeek Petronella., 2008, MIDAS Journal
  • [2] Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images
    Bagci, Ulas
    Udupa, Jayaram K.
    Mendhiratta, Neil
    Foster, Brent
    Xu, Ziyue
    Yao, Jianhua
    Chen, Xinjian
    Mollura, Daniel J.
    [J]. MEDICAL IMAGE ANALYSIS, 2013, 17 (08) : 929 - 945
  • [3] Tumour size measurement in an oncology clinical trial: Comparison between off-site and on-site measurements
    Belton, AL
    Saini, S
    Liebermann, K
    Boland, GW
    Halpern, EF
    [J]. CLINICAL RADIOLOGY, 2003, 58 (04) : 311 - 314
  • [4] Myeloma bone disease
    Callander, NS
    Roodman, GD
    [J]. SEMINARS IN HEMATOLOGY, 2001, 38 (03) : 276 - 285
  • [5] Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group
    Cavo, Michele
    Terpos, Evangelos
    Nanni, Cristina
    Moreau, Philippe
    Lentzsch, Suzanne
    Zweegman, Sonja
    Hillengass, Jens
    Engelhardt, Monika
    Usmani, Saad Z.
    Vesole, David H.
    San-Miguel, Jesus
    Kumar, Shaji K.
    Richardson, Paul G.
    Mikhael, Joseph R.
    da Costa, Fernando Leal
    Dimopoulos, Meletios-Athanassios
    Zingaretti, Chiara
    Abildgaard, Niels
    Goldschmidt, Hartmut
    Orlowski, Robert Z.
    Chng, Wee Joo
    Einsele, Hermann
    Lonial, Sagar
    Barlogie, Bart
    Anderson, Kenneth C.
    Rajkumar, S. Vincent
    Durie, Brian G. M.
    Zamagni, Elena
    [J]. LANCET ONCOLOGY, 2017, 18 (04) : E206 - E217
  • [6] Direct Parametric Image Reconstruction in Reduced Parameter Space for Rapid Multi-Tracer PET Imaging
    Cheng, Xiaoyin
    Li, Zhoulei
    Liu, Zhen
    Navab, Nassir
    Huang, Sung-Cheng
    Keller, Ulrich
    Ziegler, Sibylle I.
    Shi, Kuangyu
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) : 1498 - 1512
  • [7] Christ Patrick Ferdinand, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P415, DOI 10.1007/978-3-319-46723-8_48
  • [8] Collins Conor D, 2005, Cancer Imaging, V5 Spec No A, pS119, DOI 10.1102/1470-7330.2005.0033
  • [9] Delso G, 2011, J NUCL MED, V52, P1914, DOI 10.2967/jnumed.111.092726
  • [10] International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma
    Dimopoulos, M.
    Terpos, E.
    Comenzo, R. L.
    Tosi, P.
    Beksac, M.
    Sezer, O.
    Siegel, D.
    Lokhorst, H.
    Kumar, S.
    Rajkumar, S. V.
    Niesvizky, R.
    Moulopoulos, L. A.
    Durie, B. G. M.
    [J]. LEUKEMIA, 2009, 23 (09) : 1545 - 1556