On the stratospheric chemistry of midlatitude wildfire smoke

被引:47
作者
Solomon, Susan [1 ]
Dube, Kimberlee [2 ]
Stone, Kane [1 ]
Yu, Pengfei [3 ]
Kinnison, Doug [4 ]
Toon, Owen B. [5 ]
Strahan, Susan E. [6 ]
Rosenlof, Karen H. [7 ]
Portmann, Robert [7 ]
Davis, Sean [7 ]
Randel, William [4 ]
Bernath, Peter [8 ,9 ]
Boone, Chris [8 ]
Bardeen, Charles G. [4 ]
Bourassa, Adam [2 ]
Zawada, Daniel [2 ]
Degenstein, Doug [2 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[2] Univ Saskatchewan, Inst Space & Atmospher Sci, Saskatoon, SK S7N 5A2, Canada
[3] Jinan Univ, Inst Environm & Climate Res, Guangzhou 510630, Peoples R China
[4] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling, Boulder, CO 80307 USA
[5] Univ Colorado, Dept Atmospher & Ocean Sci, Lab Atmospher & Space Phys, Boulder, CO 80303 USA
[6] NASA, Goddard Space Flight Ctr, Goddard Earth Sci Technol & Res GESTAR, Code 916, Greenbelt, MD 20771 USA
[7] NOAA Chem Sci Lab, Boulder, CO 80305 USA
[8] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA 23529 USA
[9] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
stratospheric ozone; wildfire; chemistry; smoke; IN-SITU MEASUREMENTS; SULFATE AEROSOLS; OZONE DEPLETION; N2O5; ACID; INSTRUMENT; PARTICLES; PHASE; MODEL; NO2;
D O I
10.1073/pnas.2117325119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Massive Australian wildfires lofted smoke directly into the stratosphere in the austral summer of 2019/20. The smoke led to increases in optical extinction throughout the midlatitudes of the southern hemisphere that rivalled substantial volcanic perturbations. Previous studies have assumed that the smoke became coated with sulfuric acid and water and would deplete the ozone layer through heterogeneous chemistry on those surfaces, as is routinely observed following volcanic enhancements of the stratospheric sulfate layer. Here, observations of extinction and reactive nitrogen species from multiple independent satellites that sampled the smoke region are compared to one another and to model calculations. The data display a strong decrease in reactive nitrogen concentrations with increased aerosol extinction in the stratosphere, which is a known fingerprint for key heterogeneous chemistry on sulfate/H2O particles (specifically the hydrolysis of N2O5 to form HNO3). This chemical shift affects not only reactive nitrogen but also chlorine and reactive hydrogen species and is expected to cause midlatitude ozone layer depletion. Comparison of the model ozone to observations suggests that N2O5 hydrolysis contributed to reduced ozone, but additional chemical and/or dynamical processes are also important. These findings suggest that if wildfire smoke injection into the stratosphere increases sufficiently in frequency and magnitude as the world warms due to climate change, ozone recovery under the Montreal Protocol could be impeded, at least sporadically. Modeled austral midlatitude total ozone loss was about 1% in March 2020, which is significant compared to expected ozone recovery of about 1% per decade.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Tropospheric and stratospheric wildfire smoke profiling with lidar: mass, surface area, CCN, and INP retrieval
    Ansmann, Albert
    Ohneiser, Kevin
    Mamouri, Rodanthi-Elisavet
    Knopf, Daniel A.
    Veselovskii, Igor
    Baars, Holger
    Engelmann, Ronny
    Foth, Andreas
    Jimenez, Cristofer
    Seifert, Patric
    Barja, Boris
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (12) : 9779 - 9807
  • [2] The unprecedented 2017-2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET
    Baars, Holger
    Ansmann, Albert
    Ohneiser, Kevin
    Haarig, Moritz
    Engelmann, Ronny
    Althausen, Dietrich
    Hanssen, Ingrid
    Gausa, Michael
    Pietruczuk, Aleksander
    Szkop, Artur
    Stachlewska, Iwona S.
    Wang, Dongxiang
    Reichardt, Jens
    Skupin, Annett
    Mattis, Ina
    Trickl, Thomas
    Vogelmann, Hannes
    Navas-Guzman, Francisco
    Haefele, Alexander
    Acheson, Karen
    Ruth, Albert A.
    Tatarov, Boyan
    Muller, Detlef
    Hu, Qiaoyun
    Podvin, Thierry
    Goloub, Philippe
    Veselovskii, Igor
    Pietras, Christophe
    Haeffelin, Martial
    Freville, Patrick
    Sicard, Michael
    Comeron, Adolfo
    Fernandez Garcia, Alfonso Javier
    Molero Menendez, Francisco
    Cordoba-Jabonero, Carmen
    Luis Guerrero-Rascado, Juan
    Alados-Arboledas, Lucas
    Bortoli, Daniele
    Costa, Maria Joao
    Dionisi, Davide
    Liberti, Gian Luigi
    Wang, Xuan
    Sannino, Alessia
    Papagiannopoulos, Nikolaos
    Boselli, Antonella
    Mona, Lucia
    D'Amico, Giuseppe
    Romano, Salvatore
    Perrone, Maria Rita
    Belegante, Livio
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (23) : 15183 - 15198
  • [3] Atmospheric Chemistry Experiment (ACE):: Mission overview -: art. no. L15S01
    Bernath, PF
    McElroy, CT
    Abrams, MC
    Boone, CD
    Butler, M
    Camy-Peyret, C
    Carleer, M
    Clerbaux, C
    Coheur, PF
    Colin, R
    DeCola, P
    Bernath, PF
    McElroy, CT
    Abrams, MC
    Boone, CD
    Butler, M
    Camy-Peyret, C
    Carleer, M
    Clerbaux, C
    Coheur, PF
    Colin, R
    DeCola, P
    DeMazière, M
    Drummond, JR
    Dufour, D
    Evans, WFJ
    Fast, H
    Fussen, D
    Gilbert, K
    Jennings, DE
    Llewellyn, EJ
    Lowe, RP
    Mahieu, E
    McConnell, JC
    McHugh, M
    McLeod, SD
    Michaud, R
    Midwinter, C
    Nassar, R
    Nichitiu, F
    Nowlan, C
    Rinsland, CP
    Rochon, YJ
    Rowlands, N
    Semeniuk, K
    Simon, P
    Skelton, R
    Sloan, JJ
    Soucy, MA
    Strong, K
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (15)
  • [4] Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride
    Bertram, T. H.
    Thornton, J. A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (21) : 8351 - 8363
  • [5] Pyrocumulonimbus Stratospheric Plume Injections Measured by the ACE-FTS
    Boone, C. D.
    Bernath, P. F.
    Fromm, M. D.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (15)
  • [6] Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison
    Bourassa, A. E.
    Rieger, L. A.
    Lloyd, N. D.
    Degenstein, D. A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (01) : 605 - 614
  • [7] Braesicke P., 2018, GLOBAL OZONE RES MON
  • [8] The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission
    Cisewski, Michael
    Zawodny, Joseph
    Gasbarre, Joseph
    Eckman, Richard
    Topiwala, Nandkishore
    Rodriguez-Alvarez, Otilia
    Cheek, Dianne
    Hall, Steve
    [J]. SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XVIII, 2014, 9241
  • [9] Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere
    Ditas, Jeannine
    Ma, Nan
    Zhang, Yuxuan
    Assmann, Denise
    Neumaier, Marco
    Riede, Hella
    Karu, Einar
    Williams, Jonathan
    Scharffe, Dieter
    Wang, Qiaoqiao
    Saturno, Jorge
    Schwarz, Joshua P.
    Katich, Joseph M.
    McMeeking, Gavin R.
    Zahn, Andreas
    Hermann, Markus
    Brenninkmeijer, Carl A. M.
    Andreae, Meinrat O.
    Poschl, Ulrich
    Su, Hang
    Cheng, Yafang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (50) : E11595 - E11603
  • [10] Accounting for the photochemical variation in stratospheric NO2 in the SAGE III/ISS solar occultation retrieval
    Dube, Kimberlee
    Bourassa, Adam
    Zawada, Daniel
    Degenstein, Douglas
    Damadeo, Robert
    Flittner, David
    Randel, William
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (01) : 557 - 566