Computing zeta functions of hyperelliptic curves over finite fields of characteristic 2

被引:0
作者
Vercauteren, F
机构
[1] Univ Louvain, Dept Elect Engn, B-3001 Heverlee, Belgium
[2] Univ Bristol, Bristol BS8 1UB, Avon, England
来源
ADVANCES IN CRYPTOLOGY - CRYPTO 2002, PROCEEDINGS | 2002年 / 2442卷
关键词
hyperelliptic curves; Kedlaya's algorithm; Monsky-Washnitzer cohomology;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm for computing the zeta function of an arbitrary hyperelliptic curve over a finite field F-q of characteristic 2, thereby extending the algorithm of Kedlaya for small odd characteristic. For a genus g hyperelliptic curve over F-2(n), the asymptotic running time of the algorithm is O(g(5+epsilon)n(3+epsilon)) and the space complexity is O(g(3)n(3)).
引用
收藏
页码:369 / 384
页数:16
相关论文
共 37 条
  • [1] ARITA S, 1999, P C MATH PUBL KEY CR
  • [2] ATKIN AOL, 1992, NUMBER POINTS ELLIPT
  • [3] Blake I.F., 1999, LONDON MATH SOC LECT, V265
  • [4] DENEF J, 2002, ALG NUMB THEOR 5 INT
  • [5] DENEF J, 2002, EXTENSION KEDLAYAS A
  • [6] Elkies N., 1998, AMS IP STUDIES IN ADVANCED MATHEMATICS, P21
  • [7] FOUQUET M, 2000, J RAMANUJAN MATH SOC, V15, P281
  • [8] A REMARK CONCERNING M-DIVISIBILITY AND THE DISCRETE LOGARITHM IN THE DIVISOR CLASS GROUP OF CURVES
    FREY, G
    RUCK, HG
    [J]. MATHEMATICS OF COMPUTATION, 1994, 62 (206) : 865 - 874
  • [9] FULTON W, 1969, MATH LEC NOTE SERIES
  • [10] Galbraith SD, 2002, MATH COMPUT, V71, P393, DOI 10.1090/S0025-5718-00-01297-7