Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function

被引:180
作者
Yang, Jason H. [1 ,2 ,3 ]
Bhargava, Prerna [1 ,2 ,3 ]
McCloskey, Douglas [4 ,5 ]
Mao, Ning [1 ,2 ,6 ,7 ]
Palsson, Bernhard O. [4 ,5 ]
Collins, James J. [1 ,2 ,3 ,7 ]
机构
[1] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Broad Inst MIT & Harvard, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[5] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Bldg 220, DK-2800 Lyngby, Denmark
[6] Boston Univ, Dept Biomed Engn, Boston, MA 02115 USA
[7] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
关键词
ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; POLYAMINES; RESISTANCE; STRESS; CYCLE;
D O I
10.1016/j.chom.2017.10.020
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bactericidal antibiotics alter microbial metabolism as part of their lethality and can damage mitochondria in mammalian cells. In addition, antibiotic susceptibility is sensitive to extracellular metabolites, but it remains unknown whether metabolites present at an infection site can affect either treatment efficacy or immune function. Here, we quantify local metabolic changes in the host microenvironment following antibiotic treatment for a peritoneal Escherichia coli infection. Antibiotic treatment elicits microbiome-independent changes in local metabolites, but not those distal to the infection site, by acting directly on host cells. The metabolites induced during treatment, such as AMP, reduce antibiotic efficacy and enhance phagocytic killing. Moreover, antibiotic treatment impairs immune function by inhibiting respiratory activity in immune cells. Collectively, these results highlight the immunomodulatory potential of antibiotics and reveal the local metabolic microenvironment to be an important determinant of infection resolution.
引用
收藏
页码:757 / +
页数:12
相关论文
共 41 条
[1]   Metabolite-enabled eradication of bacterial persisters by aminoglycosides [J].
Allison, Kyle R. ;
Brynildsen, Mark P. ;
Collins, James J. .
NATURE, 2011, 473 (7346) :216-+
[2]   The role of metabolism in bacterial persistence [J].
Amato, Stephanie M. ;
Fazen, Christopher H. ;
Henry, Theresa C. ;
Mok, Wendy W. K. ;
Orman, Mehmet A. ;
Sandvik, Elizabeth L. ;
Volzing, Katherine G. ;
Brynildsen, Mark P. .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[3]   Determination of minimum inhibitory concentrations [J].
Andrews, JM .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2001, 48 :5-16
[4]  
[Anonymous], CURR PROTOC IMMUNOL, DOI DOI 10.1002/0471142735.IM1430S99
[5]   The immune response and antibacterial therapy [J].
Anuforom, Olachi ;
Wallace, Graham R. ;
Piddock, Laura V. .
MEDICAL MICROBIOLOGY AND IMMUNOLOGY, 2015, 204 (02) :151-159
[6]   Classification tools in chemistry. Part 1: linear models. PLS-DA [J].
Ballabio, Davide ;
Consonni, Viviana .
ANALYTICAL METHODS, 2013, 5 (16) :3790-3798
[7]   METABOLIC RESPONSE TO INFECTION [J].
BEISEL, WR .
ANNUAL REVIEW OF MEDICINE, 1975, 26 :9-20
[8]   Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage [J].
Belenky, Peter ;
Ye, Jonathan D. ;
Porter, Caroline B. M. ;
Cohen, Nadia R. ;
Lobritz, Michael A. ;
Ferrante, Thomas ;
Jain, Saloni ;
Korry, Benjamin J. ;
Schwarz, Eric G. ;
Walker, Graham C. ;
Collins, James J. .
CELL REPORTS, 2015, 13 (05) :968-980
[9]   Energy Metabolism and Drug Efflux in Mycobacterium tuberculosis [J].
Black, Philippa A. ;
Warren, Robin M. ;
Louw, Gail E. ;
van Helden, Paul D. ;
Victor, Thomas C. ;
Kana, Bavesh D. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (05) :2491-2503
[10]   Antibacterial drug discovery in the resistance era [J].
Brown, Eric D. ;
Wright, Gerard D. .
NATURE, 2016, 529 (7586) :336-343