Modeling of farnesyltransferase inhibition by some thiol and non-thiol peptidomimetic inhibitors using genetic neural networks and RDF approaches

被引:56
作者
González, MP
Caballero, J
Tundidor-Camba, A
Helguera, AM
Fernández, M
机构
[1] Exptl Sugar Cane Stn Villa Clara Cienfuegos, Unit Serv, Drug Design Dept, Villa Clara 53100, Cuba
[2] Cent Univ Las Villas, Chem Bioact Ctr, Santa Clara 54830, Villa Clara, Cuba
[3] Univ Matanzas, Ctr biotechnol Studies, Mol Modeling Grp, Matanzas 44740, Cuba
[4] Univ Matanzas, Ctr Biotechnol Studies, Probiot Grp, Matanzas 44740, Cuba
[5] Nat Ctr Sci Res, Sci Prospect Grp, Havana, Cuba
[6] Univ Cent Las Villas, Fac Chem & Pharm, Dept Chem, Villa Clara 54830, Cuba
关键词
farnesyltransferase; neural networks; genetic algorithm; enzyme inhibition; QSAR;
D O I
10.1016/j.bmc.2005.08.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inhibition of farnesyltransferase (FT) enzyme by a set of 78 thiol and non-thiol peptidomimetic inhibitors was successfully modeled by a genetic neural network (GNN) approach, using radial distribution function descriptors. A linear model was unable to successfully fit the whole data set; however, the optimum Bayesian regularized neural network model described about 87% inhibitory activity variance with a relevant predictive power measured by q(2) values of leave-one-out and leave-group-out cross-validations of about 0.7. According to their activity levels, thiol and non-thiol inhibitors were well-distributed in a topological map, built with the inputs of the optimum non-linear predictor. Furthermore, descriptors in the GNN model suggested the occurrence of a strong dependence of FT inhibition on the Molecular shape and size rather than on electronegativity or polarizability characteristics of the studied compounds. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 213
页数:14
相关论文
共 55 条
[1]  
[Anonymous], 2004, GEN ALG DIR SEARCH T
[2]   Potent and orally bioavailable noncysteine-containing inhibitors of protein farnesyltransferase [J].
Augeri, DJ ;
Janowick, D ;
Kalvin, D ;
Sullivan, G ;
Larsen, J ;
Dickman, D ;
Ding, H ;
Cohen, J ;
Lee, J ;
Warner, R ;
Kovar, P ;
Cherian, S ;
Saeed, B ;
Zhang, HC ;
Tahir, S ;
Ng, SC ;
Sham, H ;
Rosenberg, SH .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1999, 9 (08) :1069-1074
[3]   Potent, non-thiol inhibitors of farnesyltransferase [J].
Breslin, MJ ;
deSolms, SJ ;
Giuliani, EA ;
Stokker, GE ;
Graham, SL ;
Pompliano, DL ;
Mosser, SD ;
Hamilton, KA ;
Hutchinson, JH .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1998, 8 (23) :3311-3316
[4]   Robust QSAR models using Bayesian regularized neural networks [J].
Burden, FR ;
Winkler, DA .
JOURNAL OF MEDICINAL CHEMISTRY, 1999, 42 (16) :3183-3187
[5]   A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks [J].
Burden, FR ;
Winkler, DA .
CHEMICAL RESEARCH IN TOXICOLOGY, 2000, 13 (06) :436-440
[6]   Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks [J].
Caballero, J ;
Fernández, M .
JOURNAL OF MOLECULAR MODELING, 2006, 12 (02) :168-181
[7]   Non-thiol 3-aminomethylbenzamide inhibitors of farnesyl-protein transferase [J].
Ciccarone, TM ;
MacTough, SC ;
Williams, TM ;
Dinsmore, CJ ;
O'Neill, TJ ;
Shah, D ;
Culberson, JC ;
Koblan, KS ;
Kohl, NE ;
Gibbs, JB ;
Oliff, AI ;
Graham, SL ;
Hartman, GD .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1999, 9 (14) :1991-1996
[8]  
DEVILLERS J, 1990, EURO CH ENV, V1, P129
[9]  
Du W, 1999, MOL CELL BIOL, V19, P1831
[10]   A novel approach for the virtual screening and rational design of anticancer compounds [J].
Estrada, E ;
Uriarte, E ;
Montero, A ;
Teijeira, M ;
Santana, L ;
De Clercq, E .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (10) :1975-1985