Dolbeault cohomology of compact complex homogeneous manifolds

被引:0
|
作者
Ramani, W [1 ]
Sankaran, P [1 ]
机构
[1] SPIC Math Inst, Chennai 600017, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 1999年 / 109卷 / 01期
关键词
Dolbeault cohomology; complex homogeneous manifolds; generalized Hopf manifolds; automorphism groups; Picard group;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if M is the total space of a holomorphic bundle with base space a simply connected homogeneous projective variety and fibre and structure group a compact complex torus, then the identity component of the automorphism group of M acts trivially on the Dolbeault cohomology of M. We consider a class of compact complex homogeneous spaces W, which-we call generalized Hopf manifolds, which are diffeomorphic to S-1 x K/L where K is a compact connected simple Lie group and L is the semisimple part of the centralizer of a one dimensional torus in K. We compute the Dolbeault cohomology of W. We compute the Picard group of any generalized Hopf manifold and show that every Line bundle over a generalized Hopf manifold arises from a representation of its fundamental group.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 50 条
  • [31] Cohomology of Complex Manifolds
    Angella, Daniele
    COHOMOLOGICAL ASPECTS IN COMPLEX NON-KAHLER GEOMETRY, 2014, 2095 : 65 - 94
  • [32] AEPPLI COHOMOLOGY CLASSES ASSOCIATED WITH GAUDUCHON METRICS ON COMPACT COMPLEX MANIFOLDS
    Popovici, Dan
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (04): : 763 - 800
  • [33] Relative Dolbeault cohomology
    Suwa, Tatsuo
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2022, 13 (02): : 307 - 352
  • [34] Almost complex structures, transverse complex structures, and transverse Dolbeault cohomology
    Cahen, Michel
    Gutt, Jean
    Gutt, Simone
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (04) : 1505 - 1527
  • [35] ACTION ON DOLBEAULT COHOMOLOGY
    LESCURE, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (12): : 923 - 926
  • [36] Weighted Bott-Chern and Dolbeault cohomology for LCK-manifolds with potential
    Ornea, Liviu
    Verbitsky, Misha
    Vuletescu, Victor
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (01) : 409 - 422
  • [37] Deformations of Dolbeault cohomology classes for Lie algebra with complex structures
    Xia, Wei
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 60 (03) : 709 - 734
  • [38] HOMOGENEOUS CONTACT COMPACT MANIFOLDS AND HOMOGENEOUS SYMPLECTIC-MANIFOLDS
    MIRANDA, AD
    REVENTOS, A
    BULLETIN DES SCIENCES MATHEMATIQUES, 1982, 106 (04): : 337 - 350
  • [39] Deformations of Dolbeault cohomology classes for Lie algebra with complex structures
    Wei Xia
    Annals of Global Analysis and Geometry, 2021, 60 : 709 - 734
  • [40] Formality of the Dolbeault complex and deformations of holomorphic Poisson manifolds
    Chen, Youming
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 182