Valley-Based Noise-Resistant Quantum Computation Using Si Quantum Dots

被引:87
作者
Culcer, Dimitrie [1 ]
Saraiva, A. L. [2 ]
Koiller, Belita [2 ]
Hu, Xuedong [3 ]
Das Sarma, S. [4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China
[2] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[3] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[4] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ELECTRON-SPIN; SILICON; BLOCKADE;
D O I
10.1103/PhysRevLett.108.126804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We devise a platform for noise-resistant quantum computing using the valley degree of freedom of Si quantum dots. The qubit is encoded in two polarized (1,1) spin-triplet states with different valley compositions in a double quantum dot, with a Zeeman field enabling unambiguous initialization. A top gate gives a difference in the valley splitting between the dots, allowing controllable interdot tunneling between opposite valley eigenstates, which enables one-qubit rotations. Two-qubit operations rely on a stripline resonator, and readout on charge sensing. Sensitivity to charge and spin fluctuations is determined by intervalley processes and is greatly reduced as compared to conventional spin and charge qubits. We describe a valley echo for further noise suppression.
引用
收藏
页数:5
相关论文
共 54 条
[51]   Parallel spin filling and energy spectroscopy in few-electron Si metal-on-semiconductor-based quantum dots [J].
Xiao, M. ;
House, M. G. ;
Jiang, H. W. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)
[52]   Measurement of the Spin Relaxation Time of Single Electrons in a Silicon Metal-Oxide-Semiconductor-Based Quantum Dot [J].
Xiao, M. ;
House, M. G. ;
Jiang, H. W. .
PHYSICAL REVIEW LETTERS, 2010, 104 (09)
[53]   Restoring coherence lost to a slow interacting mesoscopic spin bath [J].
Yao, Wang ;
Liu, Ren-Bao ;
Sham, L. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[54]  
Yu PY, 2010, GRAD TEXTS PHYS, P1, DOI 10.1007/978-3-642-00710-1