An assessment of open relation extraction systems for the semantic web

被引:8
作者
Zouaq, Amal [1 ]
Gagnon, Michel [2 ]
Jean-Louis, Ludovic [3 ]
机构
[1] Univ Ottawa, Ottawa, ON, Canada
[2] Ecole Polytech Montreal, Montreal, PQ, Canada
[3] Netmail Inc, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Open knowledge extraction; Open relation extraction; Semantic analysis; Evaluation; Gold standards; Semantic web;
D O I
10.1016/j.is.2017.08.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Open relation extraction has been a growing field of research in the last few years. This paper compares some of the most prominent open relation extractors and explores their strength and weaknesses on standard datasets. In particular, we highlight the lack of formal guidelines that define a valid relation and state that open relation extractors must be situated in particular tasks and contexts. In this respect, we briefly analyze the role of open relation extractors for the semantic Web and linked data context. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:228 / 239
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 2011, P 2011 C EMP METH NA
[2]  
Banko M., 2008, P ACL 08, P28
[3]  
Bernstein A., 2005, GENERIC JAVA LIB SIM, P20
[4]  
Del Corro L., 2013, P 22 INT C WORLD WID, DOI DOI 10.1145/2488388.2488420
[5]   A Machine learning Filter for Relation Extraction [J].
Di Cesare, Kevin Lange ;
Gagnon, Michel ;
Zouaq, Amal ;
Jean-Louis, Ludovic .
PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), 2016, :69-70
[6]  
Gamallo P., 2014, 3 S LANG APPL TECHN, V38, P13
[7]  
Kiryakov A., 2004, Services and Agents on the World Wide Web, V2, P49, DOI DOI 10.1016/J.WEBSEM.2004.07.005
[8]  
Mesquita F., 2013, NY TIMES, V500, P150
[9]  
Mintz M., 2009, P 47 ANN M ACL, P1003
[10]  
Navigli R., 2002, AUTOMATIC ADAPTATION