Computational randomness and lowness

被引:69
作者
Terwijn, SA
Zambella, D
机构
[1] Free Univ Amsterdam, Dept Math & Comp Sci, NL-1081 HV Amsterdam, Netherlands
[2] Univ Turin, Dept Math, I-10123 Turin, Italy
关键词
D O I
10.2307/2695101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there are uncountably many sets that are low for the class of Schnorr random reals. We give a purely recursion theoretic characterization of these sets and show that they all have Turing degree incomparable to 0'. This contrasts with a result of Kucera and Terwijn [5] on sets that are low for the class of Martin-Lof random reals.
引用
收藏
页码:1199 / 1205
页数:7
相关论文
共 11 条
[1]  
AMBOSSPIES K, 1997, LECT NOTES PURE APPL, P1
[2]  
AMBOSSPIES K, 2000, CONT MATH, V257, P1
[3]  
DEMUTH O, 1979, LOGIC C 78, P81
[4]  
KUCERA A, 1985, LECT NOTES MATH, V1141, P245
[5]   Lowness for the class of random sets [J].
Kucera, A ;
Terwijn, SA .
JOURNAL OF SYMBOLIC LOGIC, 1999, 64 (04) :1396-1402
[6]   DEFINITION OF RANDOM SEQUENCES [J].
MARTINLOF, P .
INFORMATION AND CONTROL, 1966, 9 (06) :602-+
[7]   DEGREES OF HYPERIMMUNE SETS [J].
MILLER, W ;
MARTIN, DA .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1968, 14 (02) :159-&
[8]  
Odifreddi P., 1989, CLASSICAL RECURSION
[10]  
Schnorr C.P., 1971, LECT NOTES MATH, V218