A deep convolutional neural network based approach for vehicle classification using large-scale GPS trajectory data

被引:37
作者
Dabiri, Sina [1 ,2 ]
Markovic, Nikola [3 ]
Heaslip, Kevin [1 ]
Reddy, Chandan K. [2 ]
机构
[1] Virginia Tech, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Comp Sci, Arlington, VA 22203 USA
[3] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT USA
关键词
Deep learning; Vehicle classification; GPS data; Convolutional neural networks;
D O I
10.1016/j.trc.2020.102644
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Transportation agencies are starting to leverage increasingly-available GPS trajectory data to support their analyses and decision making. While this type of mobility data adds significant value to various analyses, one challenge that persists is lack of information about the types of vehicles that performed the recorded trips, which clearly limits the value of trajectory data in transportation system analysis. To overcome this limitation of trajectory data, a deep Convolutional Neural Network for Vehicle Classification (CNN-VC) is proposed to identify the vehicle's class from its trajectory. This paper proposes a novel representation of GPS trajectories, which is not only compatible with deep learning models, but also captures both vehicle-motion characteristics and roadway features. To this end, an open source navigation system is also exploited to obtain more accurate information on travel time and distance between GPS coordinates. Before delving into training the CNN-VC model, an efficient programmatic strategy is also designed to label large-scale GPS trajectories by means of vehicle information obtained through Virtual Weigh Station records. Our experimental results reveal that the proposed CNNVC model consistently outperforms both classical machine learning algorithms and other deep learning baseline methods. From a practical perspective, the CNN-VC model allows us to label raw GPS trajectories with vehicle classes, thereby enriching the data and enabling more comprehensive transportation studies such as derivation of vehicle class-specific origin-destination tables that can be used for planning.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Large-Scale Text Classification Using Scope-Based Convolutional Neural Network: A Deep Learning Approach
    Wang, Jiaying
    Li, Yaxin
    Shan, Jing
    Bao, Jinling
    Zong, Chuanyu
    Zhao, Liang
    IEEE ACCESS, 2019, 7 : 171548 - 171558
  • [2] Large-Scale Whale Call Classification Using Deep Convolutional Neural Network Architectures
    Wang, Dezhi
    Zhang, Lilun
    Lu, Zengquan
    Xu, Kele
    2018 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2018,
  • [3] Hypersonic Vehicle Trajectory Classification Using Convolutional Neural Network
    Gaiduchenko, Nikolai E.
    Gritsyk, Pavel A.
    2019 INTERNATIONAL CONFERENCE ON ENGINEERING AND TELECOMMUNICATION (ENT), 2019,
  • [4] Vehicle classification for large-scale traffic surveillance videos using Convolutional Neural Networks
    Zhuo, Li
    Jiang, Liying
    Zhu, Ziqi
    Li, Jiafeng
    Zhang, Jing
    Long, Haixia
    MACHINE VISION AND APPLICATIONS, 2017, 28 (07) : 793 - 802
  • [5] Vehicle classification for large-scale traffic surveillance videos using Convolutional Neural Networks
    Li Zhuo
    Liying Jiang
    Ziqi Zhu
    Jiafeng Li
    Jing Zhang
    Haixia Long
    Machine Vision and Applications, 2017, 28 : 793 - 802
  • [6] A deep convolutional neural network approach using medical image classification
    Mousavi, Mohammad
    Hosseini, Soodeh
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [7] An Optimized Approach to Vehicle-Type Classification Using a Convolutional Neural Network
    Habib, Shabana
    Khan, Noreen Fayyaz
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3321 - 3335
  • [8] Classification of Imbalanced Data Using SMOTE and AutoEncoder Based Deep Convolutional Neural Network
    Alex, Suja A.
    Nayahi, J. Jesu Vedha
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2023, 31 (03) : 437 - 469
  • [9] Data augmentation based morphological classification of galaxies using deep convolutional neural network
    Ansh Mittal
    Anu Soorya
    Preeti Nagrath
    D. Jude Hemanth
    Earth Science Informatics, 2020, 13 : 601 - 617
  • [10] Efficient Vehicle Recognition and Classification using Convolutional Neural Network
    San, Wei Jian
    Lim, Marcus Guozong
    Chuah, Joon Huang
    2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2018, : 117 - 122