On a problem of iteration invariants for distributional chaos

被引:10
作者
Dvorakova, J. [1 ]
机构
[1] Silesian Univ, Math Inst, CZ-74601 Opava, Czech Republic
关键词
Distributional chaos; Iteration invariant; Continuous maps; Compact metric space; 3; VERSIONS;
D O I
10.1016/j.cnsns.2011.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if f is a DC3 continuous map of a compact metric space then also f(N) is DC3, for every N > 0. This solves a problem given by [Li R. A note on the three versions of distributional chaos. Commun Nonlinear Sci Numer Simulat 2011:16:1993-1997]. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:785 / 787
页数:3
相关论文
共 10 条
[1]   The three versions of distributional chaos [J].
Balibrea, F ;
Smítal, J ;
Stefánková, M .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1581-1583
[2]   Omega limit sets and distributional chaos on graphs [J].
Hric, Roman ;
Malek, Michal .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (14) :2469-2475
[3]  
Kurkova V., 2010, Nonlinear Anal, V73, P1663
[4]   A note on the three versions of distributional chaos [J].
Li, Risong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :1993-1997
[5]   Specification property and distributional chaos almost everywhere [J].
Oprocha, Piotr ;
Stefankova, Marta .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) :3931-3940
[6]   DISTRIBUTIONAL CHAOS REVISITED [J].
Oprocha, Piotr .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) :4901-4925
[7]   Strange distributionally chaotic triangular maps [J].
Paganoni, L ;
Smítal, J .
CHAOS SOLITONS & FRACTALS, 2005, 26 (02) :581-589
[8]   MEASURES OF CHAOS AND A SPECTRAL DECOMPOSITION OF DYNAMICAL-SYSTEMS ON THE INTERVAL [J].
SCHWEIZER, B ;
SMITAL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) :737-754
[9]   Distributional chaos for triangular maps [J].
Smital, J ;
Stefánková, M .
CHAOS SOLITONS & FRACTALS, 2004, 21 (05) :1125-1128
[10]   A note on Schweizer-Smital chaos [J].
Wang, Lidong ;
Huan, Songmei ;
Huang, Guifeng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (06) :1682-1686