A new type of nodal solutions to singularly perturbed elliptic equations with supercritical growth

被引:4
作者
Liu, Zhisu [1 ]
Wei, Juncheng [2 ]
Zhang, Jianjun [3 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Nodal solution; Orthogonal sphere concentration; Variational method; SIGN-CHANGING SOLUTIONS; LEAST-ENERGY SOLUTIONS; EXISTENCE; SYMMETRY; DIRICHLET; PROFILE; DOMAINS; SPHERES;
D O I
10.1016/j.jde.2022.08.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we aim to investigate the following class of singularly perturbed elliptic problem {-epsilon(2 )delta u + |x|(eta)u = |x|(eta)f (u) in A,u=0 on & part;A, where epsilon > 0, eta is an element of R, A = {x is an element of R-2N : 0 < a < |x| < b}, N >= 2 and f is a nonlinearity of C-1 class with supercritical growth. By a reduction argument, we show that there exists a nodal solution u(epsilon)( )with exactly two positive and two negative peaks, which concentrate on two different orthogonal spheres of dimension N - 1 as epsilon -> 0. In particular, we establish different concentration phenomena of four peaks when the parameter eta > 2, eta = 2 and eta < 2. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:509 / 554
页数:46
相关论文
共 50 条
[31]   Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds [J].
Dancer, E. N. ;
Micheletti, A. M. ;
Pistoia, A. .
MANUSCRIPTA MATHEMATICA, 2009, 128 (02) :163-193
[32]   Existence and concentration of ground state solutions for singularly perturbed nonlocal elliptic problems [J].
Lu, Dengfeng .
MONATSHEFTE FUR MATHEMATIK, 2017, 182 (02) :335-358
[33]   Existence of a Least Energy Nodal Solution for a Class of Quasilinear Elliptic Equations with Exponential Growth [J].
Figueiredo, Giovany M. ;
Nunes, Fernando Bruno M. .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2021, 64 (03) :293-322
[34]   Elliptic equations with critical and supercritical growth at the boundary [J].
Furtado, Marcelo F. ;
de Oliveira, Rodolfo F. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (02)
[35]   SUPERCRITICAL ELLIPTIC PROBLEMS ON THE ROUND SPHERE AND NODAL SOLUTIONS TO THE YAMABE PROBLEM IN PROJECTIVE SPACES [J].
Carlos Fernandez, Juan ;
Palmas, Oscar ;
Petean, Jimmy .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) :2495-2514
[36]   Positive solutions of Kirchhoff type elliptic equations in R4 with critical growth [J].
Liu, Zhisu ;
Guo, Shangjiang ;
Fang, Yanqin .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (2-3) :367-381
[37]   Localized nodal solutions of higher topological type for semiclassical nonlinear Schrodinger equations [J].
Chen, Shaowei ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (01)
[38]   Multiple nodal solutions for a class of Kirchhoff-type equations in high dimensions [J].
Zhang, He ;
Chen, Haibo .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02)
[39]   Positive solutions for a singularly perturbed nonlinear elliptic problem on manifolds via Morse theory [J].
Ghimenti, Marco ;
Micheletti, Anna Maria .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (12) :1115-1127
[40]   Existence, local uniqueness and asymptotic approximation of spike solutions to singularly perturbed elliptic problems [J].
Omel'chenko, Oleh ;
Recke, Lutz .
HIROSHIMA MATHEMATICAL JOURNAL, 2015, 45 (01) :35-89