Asymptotic methods in the theory of nonlinear wave propagation

被引:0
作者
Varlamov, V [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
nonlinear waves; Boussinesq equation; Kuramoto-Sivashinsky equation; long-time asymptotics;
D O I
10.1016/S0362-546X(01)00341-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cauchy and initial-boundary value problems are considered for the dissipative semilinear evolution equations governing wave propagation. Their solutions are constructed in the form of a series in a small parameter present in the initial conditions. The long-time asymptotics is obtained which is essentially nonlinear.
引用
收藏
页码:2151 / 2161
页数:11
相关论文
共 9 条
[1]  
BERNEY DJ, 1966, J MATH PHYS, V45, P150
[2]  
Boussinesq J., 1872, J. Math. Pures Appl, V17, P55
[3]  
Guenther R. B., 1988, PARTIAL DIFFERENTIAL
[4]   PERSISTENT PROPAGATION OF CONCENTRATION WAVES IN DISSIPATIVE MEDIA FAR FROM THERMAL EQUILIBRIUM [J].
KURAMOTO, Y ;
TSUZUKI, T .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :356-369
[5]   TURBULENT STATE IN CHEMICAL-REACTIONS [J].
KURAMOTO, Y ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (02) :679-681
[6]   INSTABILITIES, PATTERN-FORMATION, AND TURBULENCE IN FLAMES [J].
SIVASHINSKY, GI .
ANNUAL REVIEW OF FLUID MECHANICS, 1983, 15 :179-199
[7]   ON FLAME PROPAGATION UNDER CONDITIONS OF STOICHIOMETRY [J].
SIVASHINSKY, GI .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (01) :67-82
[8]   APPROXIMATE EQUATIONS FOR LONG NON-LINEAR WAVES ON A VISCOUS-FLUID [J].
TOPPER, J ;
KAWAHARA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 44 (02) :663-666
[9]  
Varlamov V., 1996, Differential Integral Equations, V9, P619