A New Day-Ahead Hourly Electricity Price Forecasting Framework

被引:0
|
作者
Ghofrani, M. [1 ]
Azimi, R. [2 ]
Najafabadi, F. M. [1 ]
Myers, N. [1 ]
机构
[1] Univ Washington Bothell, Elect Engn Sch, STEM, Bothell, WA 98011 USA
[2] Islamic Azad Univ, Qazvin Branch, Young Researchers & Elite Club, Qazvin, Iran
来源
2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS) | 2017年
关键词
Bayesian learning; clustering; electricity price; forecasting; game theory; neural networks; persistence method; self-organizing map; NEURAL-NETWORK; ARIMA MODELS; MARKETS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper develops a hybrid electricity price-forecasting framework to improve the accuracy of prediction. A novel clustering method is proposed that uses a modified game theoretic self-organizing map (GTSOM) and neural gas (NG) along with competitive Hebbian Learning (CHL) to provide a better vector quantization (VQ). To resolve the deficiency of the original SOM, five strategies are proposed to enable the non-winning neurons to participate in the learning phase. Using GTSOM, the price-load input data are clustered into proper number of subsets. A novel cluster-selection method is proposed to select the most appropriate subset whose time-series data is processed to provide the inputs for the neural networks. Finally, Bayesian method is used to train the networks and forecast the electricity price. Market price data from an independent system operator is used to evaluate the algorithm performance. Furthermore, a comparison of the proposed method against other state-of-the-art forecasting techniques shows a significant improvement in the accuracy of the price forecast.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A hybrid model for integrated day-ahead electricity price and load forecasting in smart grid
    Wu, Lei
    Shahidehpour, Mohammad
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2014, 8 (12) : 1937 - 1950
  • [32] Forecasting day-ahead electricity prices with spatial dependence
    Yang, Yifan
    Guo, Ju'e
    Li, Yi
    Zhou, Jiandong
    INTERNATIONAL JOURNAL OF FORECASTING, 2024, 40 (03) : 1255 - 1270
  • [33] Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
    Conejo, AJ
    Plazas, MA
    Espínola, R
    Molina, AB
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) : 1035 - 1042
  • [34] Day-ahead Electricity Price forecasting using Wavelets and Weighted Nearest Neighborhood
    Bhanu, C. V. K.
    Sudheer, G.
    Radhakrishna, C.
    Phanikanth, V.
    2008 JOINT INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON) AND IEEE POWER INDIA CONFERENCE, VOLS 1 AND 2, 2008, : 422 - +
  • [35] A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting
    Srivastava, Ankit Kumar
    Pandey, Ajay Shekhar
    Elavarasan, Rajvikram Madurai
    Subramaniam, Umashankar
    Mekhilef, Saad
    Mihet-Popa, Lucian
    ENERGIES, 2021, 14 (24)
  • [36] Forecasting Day-Ahead Electricity Price with Artificial Neural Networks: a Comparison of Architectures
    Pavicevic, Milutin
    Popovic, Tomo
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 1083 - 1088
  • [37] The Role of Weather Predictions in Electricity Price Forecasting Beyond the Day-Ahead Horizon
    Sgarlato, Raffaele
    Ziel, Florian
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (03) : 2500 - 2511
  • [38] Short- to Mid-term Day-Ahead Electricity Price Forecasting Using Futures
    Steinert, Rick
    Ziel, Florian
    ENERGY JOURNAL, 2019, 40 (01) : 105 - 127
  • [39] Data-driven Two-step Day-ahead Electricity Price Forecasting Considering Price Spikes
    Liu, Shengyuan
    Jiang, Yicheng
    Lin, Zhenzhi
    Wen, Fushuan
    Ding, Yi
    Yang, Li
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2023, 11 (02) : 523 - 533
  • [40] Day-ahead hourly electricity load modeling by functional regression
    Feng, Yonghan
    Ryan, Sarah M.
    APPLIED ENERGY, 2016, 170 : 455 - 465