On univoque points for self-similar sets

被引:4
作者
Baker, Simon [1 ]
Dajani, Karma [2 ]
Jiang, Kan [2 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
关键词
univoque set; self-similar sets; Hausdorff dimension; BETA-EXPANSIONS; REAL NUMBERS;
D O I
10.4064/fm228-3-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K subset of R be the unique attractor of an iterated function system. We consider the case where K is an interval and study those elements of K with a unique coding. We prove under mild conditions that the set of points with a unique coding can be identified with a subshift of finite type. As a consequence, we can show that the set of points with a unique coding is a graph-directed self-similar set in the sense of Mauldin and Williams (1988). The theory of Mauldin and Williams then provides a method by which we can explicitly calculate the Hausdorff dimension of this set. Our algorithm can be applied generically, and our result generalises the work of Daroczy, Katai, Kallos, Komornik and de Vries.
引用
收藏
页码:265 / 282
页数:18
相关论文
共 19 条
[1]  
Baker S., 2014, ARXIV14027229
[2]   Topological and symbolic dynamics for hyperbolic systems with holes [J].
Bundfuss, Stefan ;
Krueger, Tyll ;
Troubetzkoy, Serge .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :1305-1323
[3]   Random β-expansions [J].
Dajani, K ;
Kraaikamp, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :461-479
[4]  
DAROCZY Z, 1995, PUBL MATH-DEBRECEN, V46, P385
[5]   Unique expansions of real numbers [J].
de Vries, Martijn ;
Komornik, Vilmos .
ADVANCES IN MATHEMATICS, 2009, 221 (02) :390-427
[6]  
ERDOS P, 1991, ACTA MATH HUNG, V58, P333
[7]  
Falconer K., 1990, Fractal Geometry
[8]  
Glendinning P, 2001, MATH RES LETT, V8, P535
[9]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[10]  
Kallós G, 1999, PUBL MATH-DEBRECEN, V54, P153