Techniques for dynamic state estimation of machines in power systems

被引:0
|
作者
Liu, Shanshan [1 ]
Sauer, Peter [1 ]
Namachchivaya, N. Sri [2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engnv, 1406 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Aeronaut & Astronaut Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
state estimation; synchronous machine; particle filter; PMU;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The knowledge of dynamic states of electrical machine, especially the relative rotor position and velocity, are very important for us to understand the machine performance and to possibly design advanced control systems. This paper addresses the state estimation problem of synchronous machines in power systems, both in deterministic and stochastic cases during small transients. The paper examines Extended Kalman Filters (EKF) and Particle Filter (PF) approaches. With real-time data collected by phasor measurement unit (PMU) and sufficiently known machine model, the simulation results show that the states dynamics can be successfully and accurately estimated. The method proposed in this paper can be easily applied to other type machines or extended to include parameter estimation.
引用
收藏
页码:1 / +
页数:2
相关论文
共 50 条
  • [21] Particle Filter Approach to Dynamic State Estimation of Generators in Power Systems
    Emami, Kianoush
    Fernando, Tyrone
    Iu, Herbert
    Trinh, Hieu
    Wong, Kit Po
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [22] Particle Filter Approach to Dynamic State Estimation of Generators in Power Systems
    Emami, Kianoush
    Fernando, Tyrone
    Iu, Herbert Ho-Ching
    Trinh, Hieu
    Wong, Kit Po
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (05) : 2665 - 2675
  • [23] Dynamic State Estimation for Integrated Natural Gas and Electric Power Systems
    Chen, Liang
    Hui, Xinxin
    Li, Yang
    Huang, Manyun
    Gu, Songlin
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 397 - 402
  • [24] A Consensus Approach to Dynamic State Estimation for Smart Grid Power Systems
    Alvergue, Luis
    Tang, Bixiang
    Gu, Guoxiang
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 174 - 179
  • [25] PMU-Based Dynamic State Estimation for Electric Power Systems
    Farantatos, Evangelos
    Stefopoulos, George K.
    Cokkinides, George J.
    Meliopoulos, A. P.
    2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 3046 - 3053
  • [26] Fusion of Multirate Measurements for Nonlinear Dynamic State Estimation of the Power Systems
    Ghosal, Malini
    Rao, Villa
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 216 - 226
  • [27] Dynamic State Estimation for Improving Observation and Resiliency of Interconnected Power Systems
    Alhelou, Hassan Haes
    Nagpal, Neelu
    Nagpal, Hardik
    Siano, Pierluigi
    AL-Numay, Mohammed
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (02) : 2366 - 2380
  • [28] Covariance Analysis of LAV Robust Dynamic State Estimation in Power Systems
    Sun, Lu
    Chen, Tengpeng
    Ho, Weng Khuen
    Ling, Keck Voon
    Maciejowski, Jan M.
    IEEE SYSTEMS JOURNAL, 2020, 14 (02): : 2801 - 2812
  • [29] Dynamic State Estimation in Power Systems Using A Distributed MAP Method
    Sun Yibing
    Fu Minyue
    Wang Bingchang
    Zhang Huanshui
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 47 - 52
  • [30] PMU Based Robust Dynamic State Estimation Method for Power Systems
    Zhao, Junbo
    Zhang, Gexiang
    La Scala, Massimo
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,