Denoising and spatial resolution enhancement of 4D flow MRI using proper orthogonal decomposition and lasso regularization

被引:25
作者
Fathi, Mojtaba F. [1 ]
Bakhshinejad, Ali [1 ,4 ]
Baghaie, Ahmadreza [2 ]
Saloner, David [3 ]
Sacho, Raphael H. [4 ]
Rayz, Vitally L. [2 ]
D'Souza, Roshan M. [1 ]
机构
[1] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53201 USA
[2] Purdue Univ, Dept Biomed Engn, W Lafayette, IN 47907 USA
[3] Univ Calif San Francisco, Dept Radiol, Coll Med, San Francisco, CA USA
[4] Med Coll Wisconsin, Dept Neurosurg, Milwaukee, WI 53226 USA
关键词
4D-PCMR; 4D-Flow MRI; Flow reconstruction; Computational fluid dynamics; Lasso regularization; PHASE-CONTRAST MR; COMPUTATIONAL FLUID-DYNAMICS; BLOOD-FLOW; DIVERGENCE-FREE; VELOCITY-FIELDS; NOISE-REDUCTION; IN-VIVO; QUANTIFICATION; RECONSTRUCTION; PATTERNS;
D O I
10.1016/j.compmedimag.2018.07.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
4D-Flow MRI has emerged as a powerful tool to non-invasively image blood velocity profiles in the human cardio-vascular system. However, it is plagued by issues such as velocity aliasing, phase offsets, acquisition noise, and low spatial and temporal resolution. In imaging small blood vessel malformations such as intra-cranial aneurysms, the spatial resolution of 4D-Flow is often inadequate to resolve fine flow features. In this paper, we address the problem of low spatial resolution and noise by combining 4D-Flow MRI and patient specific computational fluid dynamics using Least Absolute Shrinkage and Selection Operator. Extensive experiments using numerical phantoms of two actual intra-cranial aneurysms geometries show the applicability of the proposed method in recovering the flow profile. Comparisons with the state-of-the-art denoising methods for 4D-Flow show lower error metrics. This method can enable more accurate computation of flow derived patho-physiological parameters such as wall shear stresses, pressure gradients, and viscous dissipation. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 43 条
  • [1] Analysis of noise in phase contrast MR imaging
    Andersen, AH
    Kirsch, JE
    [J]. MEDICAL PHYSICS, 1996, 23 (06) : 857 - 869
  • [2] Andrew G., 2007, P 24 INT C MACH LEAR, P33, DOI DOI 10.1145/1273496.1273501
  • [3] [Anonymous], 2013, NUMERICAL METHODS SO
  • [4] An image-based modeling framework for patient-specific computational hemodynamics
    Antiga, Luca
    Piccinelli, Marina
    Botti, Lorenzo
    Ene-Iordache, Bogdan
    Remuzzi, Andrea
    Steinman, David A.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (11) : 1097 - 1112
  • [5] Bakhshinejad A., 2016, BIOM ENG SOC BMES 20
  • [6] Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression
    Bakhshinejad, Ali
    Baghaie, Ahmadreza
    Vali, Alireza
    Saloner, David
    Rayz, Vitaliy L.
    D'Souza, Roshan M.
    [J]. JOURNAL OF BIOMECHANICS, 2017, 58 : 162 - 173
  • [7] RECONSTRUCTIONS OF PHASE-CONTRAST, PHASED-ARRAY MULTICOIL DATA
    BERNSTEIN, MA
    GRGIC, M
    BROSNAN, TJ
    PELC, NJ
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (03) : 330 - 334
  • [8] Concomitant gradient terms in phase contrast MR: Analysis and correction
    Bernstein, MA
    Zhou, XHJ
    Polzin, JA
    King, KF
    Ganin, A
    Pelc, NJ
    Glover, GH
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (02) : 300 - 308
  • [9] Bock J, 2007, 15 SCI M INT SOC MAG
  • [10] Improved Variational Denoising of Flow Fields with Application to Phase-Contrast MRI Data
    Bostan, Emrah
    Lefkimmiatis, Stamatios
    Vardoulis, Orestis
    Stergiopulos, Nikolaos
    Unser, Michael
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (06) : 762 - 766