PET segmentation of bulky tumors: Strategies and workflows to improve inter-observer variability

被引:19
作者
Pfaehler, Elisabeth [1 ]
Burggraaff, Coreline [2 ]
Kramer, Gem [2 ]
Zijlstra, Josee [2 ]
Hoekstra, Otto S. [3 ]
Jalving, Mathilde [3 ]
Noordzij, Walter [1 ]
Brouwers, Adrienne H. [1 ]
Stevenson, Marc G. [4 ]
de Jong, Johan [1 ]
Boellaard, Ronald [1 ,2 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Nucl Med & Mol Imaging, Groningen, Netherlands
[2] Canc Ctr Amsterdam, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Oncol Med, Groningen, Netherlands
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Surg Oncol, Groningen, Netherlands
关键词
CELL LUNG-CANCER; FDG-PET; VOLUME; DELINEATION; REPEATABILITY; RADIOTHERAPY; IMPACT; RADIOMICS; ACCURACY; FEATURES;
D O I
10.1371/journal.pone.0230901
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background PET-based tumor delineation is an error prone and labor intensive part of image analysis. Especially for patients with advanced disease showing bulky tumor FDG load, segmentations are challenging. Reducing the amount of user-interaction in the segmentation might help to facilitate segmentation tasks especially when labeling bulky and complex tumors. Therefore, this study reports on segmentation workflows/strategies that may reduce the inter-observer variability for large tumors with complex shapes with different levels of userinteraction. Methods Twenty PET images of bulky tumors were delineated independently by six observers using four strategies: (I) manual, (II) interactive threshold-based, (III) interactive threshold-based segmentation with the additional presentation of the PET-gradient image and (IV) the selection of the most reasonable result out of four established semi-automatic segmentation algorithms (Select-the-best approach). The segmentations were compared using Jaccard coefficients (JC) and percentage volume differences. To obtain a reference standard, a majority vote (MV) segmentation was calculated including all segmentations of experienced observers. Performed and MV segmentations were compared regarding positive predictive value (PPV), sensitivity (SE), and percentage volume differences. Results The results show that with decreasing user-interaction the inter-observer variability decreases. JC values and percentage volume differences of Select-the-best and a workflow including gradient information were significantly better than the measurements of the other segmentation strategies (p-value<0.01). Interactive threshold-based and manual segmentations also result in significant lower and more variable PPV/SE values when compared with the MV segmentation. Conclusions FDG PET segmentations of bulky tumors using strategies with lower user-interaction showed less inter-observer variability. None of the methods led to good results in all cases, but use of either the gradient or the Select-the-best workflow did outperform the other strategies tested and may be a good candidate for fast and reliable labeling of bulky and heterogeneous tumors.
引用
收藏
页数:18
相关论文
共 43 条
[11]   Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists [J].
Giraud, P ;
Elles, S ;
Helfre, S ;
De Rycke, Y ;
Servois, V ;
Carette, MF ;
Alzieu, C ;
Bondiau, PY ;
Dubray, B ;
Touboul, E ;
Housset, M ;
Rosenwald, JC ;
Cosset, JM .
RADIOTHERAPY AND ONCOLOGY, 2002, 62 (01) :27-36
[12]   Summary of the UPICT Protocol for 18F-FDG PET/CT Imaging in Oncology Clinical Trials [J].
Graham, Michael M. ;
Wahl, Richard L. ;
Hoffman, John M. ;
Yap, Jeffrey T. ;
Sunderland, John J. ;
Boellaard, Ronald ;
Perlman, Eric S. ;
Kinahan, Paul E. ;
Christian, Paul E. ;
Hoekstra, Otto S. ;
Dorfman, Gary S. .
JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (06) :955-961
[13]   The first MICCAI challenge on PET tumor segmentation [J].
Hatt, Mathieu ;
Laurent, Baptiste ;
Ouahabi, Anouar ;
Fayad, Hadi ;
Tan, Shan ;
Li, Laquan ;
Lu, Wei ;
Jaouen, Vincent ;
Tauber, Clovis ;
Czakon, Jakub ;
Drapejkowski, Filip ;
Dyrka, Witold ;
Camarasu-Pop, Sorina ;
Cervenansky, Frederic ;
Girard, Pascal ;
Glatard, Tristan ;
Kain, Michael ;
Yao, Yao ;
Barillot, Christian ;
Kirov, Assen ;
Visvikis, Dimitris .
MEDICAL IMAGE ANALYSIS, 2018, 44 :177-195
[14]   Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211 [J].
Hatt, Mathieu ;
Lee, John A. ;
Schmidtlein, Charles R. ;
El Naqa, Issam ;
Caldwell, Curtis ;
De Bernardi, Elisabetta ;
Lu, Wei ;
Das, Shiva ;
Geets, Xavier ;
Gregoire, Vincent ;
Jeraj, Robert ;
MacManus, Michael P. ;
Mawlawi, Osama R. ;
Nestle, Ursula ;
Pugachev, Andrei B. ;
Schoeder, Heiko ;
Shepherd, Tony ;
Spezi, Emiliano ;
Visvikis, Dimitris ;
Zaidi, Habib ;
Kirov, Assen S. .
MEDICAL PHYSICS, 2017, 44 (06) :E1-E42
[15]   Brain tumor segmentation with Deep Neural Networks [J].
Havaei, Mohammad ;
Davy, Axel ;
Warde-Farley, David ;
Biard, Antoine ;
Courville, Aaron ;
Bengio, Yoshua ;
Pal, Chris ;
Jodoin, Pierre-Marc ;
Larochelle, Hugo .
MEDICAL IMAGE ANALYSIS, 2017, 35 :18-31
[16]   Reproducibility of Dynamic Contrast-enhanced MR Imaging Part II. Comparison of Intra- and Interobserver Variability with Manual Region of Interest Placement versus Semiautomatic Lesion Segmentation and Histogram Analysis [J].
Heye, Tobias ;
Merkle, Elmar M. ;
Reiner, Caecilia S. ;
Davenport, Matthew S. ;
Horvath, Jeffrey J. ;
Feuerlein, Sebastian ;
Breault, Steven R. ;
Gall, Peter ;
Bashir, Mustafa R. ;
Dale, Brian M. ;
Kiraly, Atilla P. ;
Boll, Daniel T. .
RADIOLOGY, 2013, 266 (03) :812-821
[17]   Matplotlib: A 2D graphics environment [J].
Hunter, John D. .
COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) :90-95
[18]   Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma [J].
Ilyas, Hajira ;
Mikhaeel, N. George ;
Dunn, Joel T. ;
Rahman, Fareen ;
Moller, Henrik ;
Smith, Daniel ;
Barrington, Sally F. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (07) :1142-1154
[19]  
Jentzen W, 2007, J NUCL MED, V48, P108
[20]   Repeatability of [18F]FDG PET/CT total metabolic active tumour volume and total tumour burden in NSCLC patients [J].
Kolinger, Guilherme D. ;
Garcia, David Vallez ;
Kramer, Gerbrand M. ;
Frings, Virginie ;
Smit, Egbert F. ;
de Langen, Adrianus J. ;
Dierckx, Rudi A. J. O. ;
Hoekstra, Otto S. ;
Boellaard, Ronald .
EJNMMI RESEARCH, 2019, 9 (1)