Generation of mutant pigs by lipofection-mediated genome editing in embryos

被引:14
作者
Hirata, Maki [1 ,2 ]
Wittayarat, Manita [3 ]
Namula, Zhao [1 ,4 ]
Le, Quynh Anh [1 ]
Lin, Qingyi [1 ]
Takebayashi, Koki [1 ]
Thongkittidilok, Chommanart [1 ]
Mito, Taro [1 ,2 ]
Tomonari, Sayuri [1 ]
Tanihara, Fuminori [1 ,5 ]
Otoi, Takeshige [1 ,2 ]
机构
[1] Tokushima Univ, Fac Biosci & Bioind, Tokushima, Japan
[2] Tokushima Univ, Bioinnovat Res Ctr, Tokushima, Japan
[3] Prince Songkla Univ, Fac Vet Sci, Hat Yai, Thailand
[4] Guangdong Ocean Univ, Coll Coastal Agr Sci, Zhanjiang, Guangdong, Peoples R China
[5] Jichi Med Univ, Ctr Dev Adv Med Technol, Shimotsuke, Tochigi, Japan
基金
日本学术振兴会;
关键词
FIBER-TYPE DISTRIBUTION; HEAVY-CHAIN ISOFORMS; IN-VITRO; HIGHLY EFFICIENT; GENE; TRANSFECTION; DELIVERY; EXPRESSION; NUCLEASES; INJECTION;
D O I
10.1038/s41598-021-03325-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The specificity and efficiency of CRISPR/Cas9 gene-editing systems are determined by several factors, including the mode of delivery, when applied to mammalian embryos. Given the limited time window for delivery, faster and more reliable methods to introduce Cas9-gRNA ribonucleoprotein complexes (RNPs) into target embryos are needed. In pigs, somatic cell nuclear transfer using gene-modified somatic cells and the direct introduction of gene editors into the cytoplasm of zygotes/embryos by microinjection or electroporation have been used to generate gene-edited embryos; however, these strategies require expensive equipment and sophisticated techniques. In this study, we developed a novel lipofection-mediated RNP transfection technique that does not require specialized equipment for the generation of gene-edited pigs and produced no detectable off-target events. In particular, we determined the concentration of lipofection reagent for efficient RNP delivery into embryos and successfully generated MSTN gene-edited pigs (with mutations in 7 of 9 piglets) after blastocyst transfer to a recipient gilt. This newly established lipofection-based technique is still in its early stages and requires improvements, particularly in terms of editing efficiency. Nonetheless, this practical method for rapid and large-scale lipofection-mediated gene editing in pigs has important agricultural and biomedical applications.
引用
收藏
页数:12
相关论文
共 56 条
[1]   The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals [J].
Aiello, D. ;
Patel, K. ;
Lasagna, E. .
ANIMAL GENETICS, 2018, 49 (06) :505-519
[2]   Cationic liposome-mediated gene delivery: Biophysical study and mechanism of internalization [J].
Almofti, MR ;
Harashima, H ;
Shinohara, Y ;
Almofti, A ;
Baba, Y ;
Kiwada, H .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2003, 410 (02) :246-253
[3]   Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP [J].
Bi, Yanzhen ;
Hua, Zaidong ;
Liu, Ximei ;
Hua, Wenjun ;
Ren, Hongyan ;
Xiao, Hongwei ;
Zhang, Liping ;
Li, Li ;
Wang, Zhirui ;
Laible, Gotz ;
Wang, Yan ;
Dong, Faming ;
Zheng, Xinmin .
SCIENTIFIC REPORTS, 2016, 6
[4]   Easy quantitative assessment of genome editing by sequence trace decomposition [J].
Brinkman, Eva K. ;
Chen, Tao ;
Amendola, Mario ;
van Steensel, Bas .
NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
[5]   Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector [J].
Cabot, RA ;
Kühholzer, B ;
Chan, AWS ;
Lai, L ;
Park, KW ;
Chong, KY ;
Schatten, G ;
Murphy, CN ;
Abeydeera, LR ;
Day, BN ;
Prather, RS .
ANIMAL BIOTECHNOLOGY, 2001, 12 (02) :205-+
[6]   A highly specific SpCas9 variant is identified by in vivo screening in yeast [J].
Casini, Antonio ;
Olivieri, Michele ;
Petris, Gianluca ;
Montagna, Claudia ;
Reginato, Giordano ;
Maule, Giulia ;
Lorenzin, Francesca ;
Prandi, Davide ;
Romanel, Alessandro ;
Demichelis, Francesca ;
Inga, Alberto ;
Cereseto, Anna .
NATURE BIOTECHNOLOGY, 2018, 36 (03) :265-+
[7]   Enhanced proofreading governs CRISPR-Cas9 targeting accuracy [J].
Chen, Janice S. ;
Dagdas, Yavuz S. ;
Kleinstiver, Benjamin P. ;
Welch, Moira M. ;
Sousa, Alexander A. ;
Harrington, Lucas B. . ;
Sternberg, Samuel H. ;
Joung, J. Keith ;
Yildiz, Ahmet ;
Doudna, Jennifer A. .
NATURE, 2017, 550 (7676) :407-+
[8]   Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9 [J].
Chen, Yongchang ;
Zheng, Yinghui ;
Kang, Yu ;
Yang, Weili ;
Niu, Yuyu ;
Guo, Xiangyu ;
Tu, Zhuchi ;
Si, Chenyang ;
Wang, Hong ;
Xing, Ruxiao ;
Pu, Xiuqiong ;
Yang, Shang-Hsun ;
Li, Shihua ;
Ji, Weizhi ;
Li, Xiao-Jiang .
HUMAN MOLECULAR GENETICS, 2015, 24 (13) :3764-3774
[9]   CRISPResso2 provides accurate and rapid genome editing sequence analysis [J].
Clement, Kendell ;
Rees, Holly ;
Canver, Matthew C. ;
Gehrke, Jason M. ;
Farouni, Rick ;
Hsu, Jonathan Y. ;
Cole, Mitchel A. ;
Liu, David R. ;
Joung, J. Keith ;
Bauer, Daniel E. ;
Pinello, Luca .
NATURE BIOTECHNOLOGY, 2019, 37 (03) :224-226
[10]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823