Norm of the Hilbert matrix on Bergman spaces

被引:19
作者
Bozin, Vladimir [1 ]
Karapetrovic, Boban [1 ]
机构
[1] Univ Belgrade, Fac Math, Studentski Trg 16, Belgrade, Serbia
关键词
Hilbert matrix; Bergman spaces; OPERATORS;
D O I
10.1016/j.jfa.2017.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the Hilbert matrix, operator H is a bounded operator from the Bergman space A(P) into A(P) if and only if 2 < p < infinity. In [5] it was shown that the norm of the Hilbert matrix operator H on the Bergman space A(P) is equal to pi/sin2 pi/p when 4 <= p < infinity, and it was also conjectured that parallel to H parallel to(Ap -> Ap) = pi/sin2 pi/p, when 2 < p < 4. In this paper we prove this conjecture. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:525 / 543
页数:19
相关论文
共 14 条
[1]   The Eigenfunctions of the Hilbert Matrix [J].
Aleman, Alexandru ;
Montes-Rodriguez, Alfonso ;
Sarafoleanu, Andreea .
CONSTRUCTIVE APPROXIMATION, 2012, 36 (03) :353-374
[2]   The multiplicative Hilbert matrix [J].
Brevig, Ole Fredrik ;
Perfekt, Karl-Mikael ;
Seip, Kristian ;
Siskakis, Aristomenis G. ;
Vukotic, Dragan .
ADVANCES IN MATHEMATICS, 2016, 302 :410-432
[3]   Composition operators and the Hilbert matrix [J].
Diamantopoulos, E ;
Siskakis, AG .
STUDIA MATHEMATICA, 2000, 140 (02) :191-198
[4]   Hilbert matrix on Bergman spaces [J].
Diamantopoulos, E .
ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) :1067-1078
[5]   Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type [J].
Dostanic, Milutin ;
Jevtic, Miroljub ;
Vukotic, Dragan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2800-2815
[6]   Inequalities for beta and gamma functions via some classical and new integral inequalities [J].
Dragomir, SS ;
Agarwal, RP ;
Barnett, NS .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (02) :103-165
[7]  
Duren P., 2004, MATH SURVEYS MONOGR, V100
[8]   GENERALIZED HILBERT OPERATORS [J].
Galanopoulos, Petros ;
Girela, Daniel ;
Angel Pelaez, Jose ;
Siskakis, Aristomenis G. .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) :231-258
[9]  
Jevtic M., 2016, RSME SPRINGER SER, V2
[10]   Hilbert matrix operator on Besov spaces [J].
Jevtic, Miroljub ;
Karapetrovic, Boban .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (3-4) :359-371